Catalysis Science & Technology
Paper
treatment. Thanks to the unique structure of Bi-BTC, the as-
9 H. Huang, X. Han, X. Li, S. Wang, P. K. Chu and Y. Zhang,
ACS Appl. Mater. Interfaces, 2015, 7, 482–492.
prepared BiOBr/Bi O Br is constructed of BiOBr and
4 31 10
2
Bi24
O
31Br10 nanosheets and shows a hierarchical rod-like
morphology. In photocatalytic activity tests, BiOBr/Bi O Br
4 31 10
10 F.-t. Li, Q. Wang, J. Ran, Y.-j. Hao, X.-j. Wang, D. Zhao and
S. Z. Qiao, Nanoscale, 2015, 7, 1116–1126.
2
annealed at 450 °C shows much higher RhB degradation
efficiency than other samples without bromination treatment
11 M. Ao, K. Liu, X. Tang, Z. Li, Q. Peng and J. Huang, Beilstein
J. Nanotechnol., 2019, 10, 1412–1422.
(
Bi O ) or obtained at different temperatures, and it
12 J. Zhang, L. Zhang, X. Shen, P. Xu and J. Liu, CrystEngComm,
2016, 18, 3856–3865.
13 Y. Y. Yang, X. G. Zhang, C. G. Niu, H. P. Feng, P. Z. Qin, H.
Guo, C. Liang, L. Zhang, H. Y. Liu and L. Li, Appl. Catal., B,
2020, 264, 1–15.
2
3
maintains the outstanding photocatalytic performance in a
wide pH range. The TOC and full UV-vis results confirm the
good mineralization performance of BiOBr/Bi O Br under
24 31 10
visible-light irradiation. In addition, BiOBr/Bi O Br
4 31 10
2
exhibits good reusability and structural stability in four
recycling tests. Optical analyses and electrochemical
measurements reveal that the annealing temperatures can
significantly affect the photo absorption ability, charge
separation efficiency and transportation of carriers in the
BiOBr/Bi O Br heterojunction, and the sample annealed
14 Y. Zhang, Z. Shi, L. Luo, Z. Liu, D. K. Macharia, G.
Duoerkun, C. Shen, J. Liu and L. Zhang, J. Colloid Interface
Sci., 2020, 561, 307–317.
15 C. Liang, H. P. Feng, H. Y. Niu, C. G. Niu, J. S. Li, D. W.
Huang, L. Zhang, H. Guo, N. Tang and H. Y. Liu, Chem. Eng.
J., 2020, 384, 123236.
2
4 31 10
at 450 °C shows superiority in all these aspects, which is in
good agreement with the photocatalytic performances in RhB
degradation. According to the energy band structure of
heterojunctions and analysis of free radicals, the
heterojunction structure of BiOBr/Bi O Br enables it to
16 Y. Zhang, L. Luo, Z. Shi, X. Shen, C. Peng, J. Liu, Z.
Chen, Q. Chen and L. Zhang, ChemCatChem, 2019, 11,
2855–2863.
17 H. Guo, C. G. Niu, D. W. Huang, N. Tang, C. Liang, L.
Zhang, X. J. Wen, Y. Yang, W. J. Wang and G. M. Zeng,
Chem. Eng. J., 2019, 360, 349–363.
2
4 31 10
exhibit higher photoresponse and longer electron–hole
lifetimes compared with single-phase photocatalysts. The
18 H. Guo, H. Y. Niu, C. Liang, C. G. Niu, D. W. Huang, L.
Zhang, N. Tang, Y. Yang, C. Y. Feng and G. M. Zeng,
J. Catal., 2019, 370, 289–303.
+
−
1
photo-induced h , ˙O
and O2 are proved to be the
2
functional free radicals in RhB degradation.
1
2
2
2
2
2
2
9 Z. Shi, Y. Zhang, X. Shen, G. Duoerkun, B. Zhu, L. Zhang, M.
Li and Z. Chen, Chem. Eng. J., 2020, 386, 124010.
0 R. Zha, R. Nadimicherla and X. Guo, J. Mater. Chem. A,
Conflicts of interest
There are no conflicts to declare.
2
015, 3, 6565–6574.
1 Y. Xiang, P. Ju, Y. Wang, Y. Sun, D. Zhang and J. Yu, Chem.
Eng. J., 2016, 288, 264–275.
2 N. K. Veldurthi, N. K. Eswar, S. A. Singh and G. Madras,
Catal. Sci. Technol., 2018, 8, 1083–1093.
3 M. Wang, P. Ju, Y. Zhao, J. Li, X. Han and Z. Hao, New J.
Chem., 2018, 42, 910–917.
4 X. Tang, Z. Wang, N. Wu, S. Liu and N. Liu, Catal. Commun.,
Acknowledgements
This work was financially supported by the National Natural
Science Foundation of China (No. 51774330) and the
Fundamental Research Funds for the Central Universities of
Central South University (No. 2018zzts804).
2
019, 119, 119–123.
References
5 Q. Wang, D. Jiao, J. Lian, Q. Ma, J. Yu, H. Huang, J. Zhong
1
P. Xu, G. M. Zeng, D. L. Huang, C. L. Feng, S. Hu, M. H.
Zhao, C. Lai, Z. Wei, C. Huang, G. X. Xie and Z. F. Liu, Sci.
Total Environ., 2012, 424, 1–10.
and J. Li, J. Alloys Compd., 2015, 649, 474–482.
26 G. Maurin, C. Serre, A. Cooper and G. Férey, Chem. Soc. Rev.,
2017, 46, 3104–3107.
2
3
4
5
6
7
8
M. N. Chong, B. Jin, C. W. K. Chow and C. Saint, Water Res.,
27 F. Meng, Z. Fang, Z. Li, W. Xu, M. Wang, Y. Liu, J. Zhang, W.
Wang, D. Zhao and X. Guo, J. Mater. Chem. A, 2013, 1, 7235–7241.
28 J. Huang, G. Fang, K. Liu, J. Zhou, X. Tang, K. Cai and S.
Liang, Chem. Eng. J., 2017, 322, 281–292.
29 K. M. L. Taylor-Pashow, J. Della Rocca, Z. Xie, S. Tran and W.
Lin, J. Am. Chem. Soc., 2009, 131, 14261–14263.
30 I. Abánades Lázaro and R. S. Forgan, Coord. Chem. Rev.,
2019, 380, 230–259.
31 X. Hou, S. L. Stanley, M. Zhao, J. Zhang, H. Zhou, Y. Cai, F.
Huang and Q. Wei, J. Alloys Compd., 2019, 777, 982–990.
32 Y. Du, R. Z. Chen, J. F. Yao and H. T. Wang, J. Alloys Compd.,
2013, 551, 125–130.
33 J. Xu, Q. Ji, X. Yan, C. Wang and L. Wang, Appl. Catal., B,
2020, 268, 2–9.
2
010, 44, 2997–3027.
M. Mehrjouei, S. Müller and D. Möller, Chem. Eng. J.,
015, 263, 209–219.
J. Tang, Z. Zou and J. Ye, Angew. Chem., Int. Ed., 2004, 43,
463–4466.
L. Ye, J. Liu, Z. Jiang, T. Peng and L. Zan, Appl. Catal., B,
013, 142–143, 1–7.
D. Zhang, J. Li, Q. Wang and Q. Wu, J. Mater. Chem. A,
013, 1, 8622–8629.
2
4
2
2
X. Shi, X. Chen, X. Chen, S. Zhou, S. Lou, Y. Wang and L.
Yuan, Chem. Eng. J., 2013, 222, 120–127.
X. Li, X. Mao, X. Zhang, Y. Wang, Y. Wang, H. Zhang, X. Hao
and C. Fan, Sci. China: Chem., 2015, 58, 457–466.
This journal is © The Royal Society of Chemistry 2020
Catal. Sci. Technol.