Please do not adjust margins
Journal of Materials Chemistry A
Page 6 of 8
DOI: 10.1039/C6TA04917F
COMMUNICATION
Journal Name
diethylbiphenylin good yields without efficient size selectivity. the Natural Science Foundation of China (21574080, 51403126 and
Therefore, the porous structures had the major impact on the 21102091), the Shanghai Committee of Science and Technology
catalytic behavior through spatially controlling the formation of the (15JC1490500 ) and an ERC grant on 2DMATER. We also thank the
species in the process of homocoupling reaction (e.g. the Instrumental Analysis Center of Shanghai Jiao Tong University for
intermediates formed in the transmetallation step).
provide some measurements.
To further probe the catalytic activities and selectivities with
respect to the porous structures, a mixture containing phenyl, 4-
methylphenyl, and 4-ethylphenyl Grignard reagents in 1:1:1 eq.
were treated with CoF@B-Ph-ae-n containing a stoichiometric
amount of cobalt cations in THF under mild conditions (55°C). Gas
chromatography mass–spectrometry (GC-MS) analyses revealed
that the distribution of coupling products is highly dependent on
the pore size of the as-made anionic porous polymers, and the
microporous CoF@B-Ph-ae-2 showed the best size selectivity for
the formation of biphenyl homocoupling product (Table S2, Fig.
S14-S18). Undoubtedly, such results will be helpful for developing
new catalytic systems with high size and shape selectivity.
Notes and references
1
2
A. G. Slater, A. I. Cooper, Science, 2015, 348, 8075.
a) X. Zhu, C. Tian, S. M. Mahurin, S.-H. Chai, C. Wang, S. Brown, G. M.
Veith, H. Luo, H. Liu, S. Dai, J. Am. Chem. Soc., 2012, 134, 10478; b) J.
Zhang, S. H. Chai, Z. A. Qiao, S. M. Mahurin, J. Chen, Y. Fang, S. Wan, K.
Nelson, P. Zhang, S. Dai, Angew. Chem., Int. Ed., 2015, 54, 932.
a) Q. Fang, S. Gu, J. Zheng, Z. Zhuang, S. Qiu, Y. Yan, Angew. Chem., Int.
Ed., 2014, 53, 2878; b) R. Palkovits, M. Antonietti, P. Kuhn, A. Thomas, F.
Schuth, Angew. Chem., Int. Ed., 2009, 48, 6909; c) H. Fei, J. Shin, Y. S.
Meng, M. Adelhardt, J. Sutter, K. Meyer, S. M. Cohen, J. Am. Chem.
Soc., 2014, 136, 4965.
3
4
5
6
a) F. Vilela, K. Zhang, M. Antonietti, Energ. Environ. Sci., 2012, 5, 7819;
b) S. Jin, H. J. Son, O. K. Farha, G. P. Wiederrecht, J. T. Hupp, J. Am.
Chem. Soc., 2013, 135, 955; c) Y. Kou, Y. Xu, Z. Guo, D. Jiang, Angew.
Chem., Int. Ed., 2011, 50, 8753.
Conclusions
a) H. C. Zhou, J. R. Long, O. M. Yaghi, Chem. Rev., 2012, 112, 673; b) Z. J.
Lin, J. Lu, M. Hong, R. Cao, Chem. Soc. Rev., 2014, 43, 5867; c) Y. Liu, W.
Xuan, Y. Cui, Adv. Mater., 2010, 22, 4112; d) A. Corma, H. García, F. X. L.
Xamena, Chem. Rev., 2010, 110, 4606.
a) W. J. Roth, P. Nachtigall, R. E. Morris, J. Cejka, Chem. Rev.,2014, 114,
4807; b) M. E. Davis, Chem. Mater., 2013, 26, 239; c) A. Karmakar, A. V.
Desai, S. K. Ghosh, Coord. Chem. Rev., 2016, 307, 313.
In conclusion, we have developed a series of Lewis acid boron-
containing conjugated polymers with hierarchical porous structures
via typical transition metal-catalyzed cross-coupling reactions. The
distinct capability of the resulting neutral porous polymers to
selectively capture fluoride ions renders
a high-efficiency
conversion into stable anionic porous polymers. Importantly, the
fluoride anion binding boron in a solid sample, for the first time,
was clearly characterized through solid-state 11B MAS NMR
spectroscopy, which would provide a very valuable reference for
the corresponding investigation. Upon simple ion-exchange
performance, various heavy metal cations were able to be loaded
into the networks of the anionic porous polymers. Generally, such
synthetic strategy might represent an efficient approach to versatile
functional porous materials via a successively loading performance.
As an example, the cobalt (II)-loaded porous polymers exhibit a
distinct size selectivity for homocoupling reactions of aryl Grignard
reagents, that is highly related to the porous structures. Using such
a simple ion exchange strategy, various catalytically active metal
ions, can be rationally incorporated into the as-prepared anionic
porous polymers, resulting into new heterogeneous catalytic
systems. One can expect that the catalytic behavior are tunable not
only by the pore structures of the porous polymers, but also
through introduction of other ligands by “ship in bottle” technique.
Moreover, simultaneous integration of multi-metals in the porous
polymers may provide synergetic effects for certain catalytic
organic transformations with the size and shape control. On the
other hand, the pronounced capability to selectively recycle and
reuse environmentally harmful fluoride anions and heavy metals
makes the as-prepared boron-based porous polymers promising
candidates for potential applications in the comprehensive
management of the environment.
7
8
9
a) G. Sartori, R. Maggi, Chem. Rev., 2011, 111, 181; b) P. H. Espeel, B.
Janssens, P. A. Jacobs, J. Org. Chem., 1993, 58, 7688.
S. Saravanamurugan, M. Paniagua, J. A. Melero, A. Riisager, J. Am.
Chem. Soc., 2013, 135, 5246.
S. Tontisirin, S. Ernst, Angew. Chem., Int. Ed., 2007, 46, 7304.
10 M. Moliner, F. Rey, A. Corma, Angew. Chem., Int. Ed., 2013, 52, 13880.
11 a) D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Chem. Rev., 2012,
112, 3959; b) R. Dawson, A. I. Cooper, D. J. Adams, Prog. Polym. Sci.,
2012, 37, 530; c) X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev., 2012, 41,
6010; d) X. M. Liu, Y. W. Zhang, H. Li, S. G. A, H. Xia and Y. Mu, RSC Adv.,
2013, 3, 21267; e) Q. Sun, Z. Dai, X. Meng, F. S. Xiao, Chem. Soc. Rev.,
2015, 44, 6018; f) C. Pei, T. Ben, S. Qiu, Mater. Horiz., 2015, 2, 11; g) A.
Thomas, Angew. Chem., Int. Ed., 2010, 49, 8328.
12 Y. Xu, S. Jin, H. Xu, A. Nagai, D. Jiang, Chem. Soc. Rev., 2013, 42, 8012.
13 Y. Yuan, F. Sun, L. Li, P. Cui, G. Zhu, Nat. Commun., 2014, 5, 4260.
14 a) S. Fischer, J. Schmidt, P. Strauch, A. Thomas, Angew. Chem., Int. Ed.,
2013, 52, 12174; b) Z. Yan, Y. Yuan, Y. Tian, D. Zhang, G. Zhu, Angew.
Chem., Int. Ed., 2015, 54, 12733; c) J. F. V. Humbeck, M. L. Aubrey, A.
Alsbaiee, R. Ameloot, G. W. Coates , W. R. Dichtel , J. R. Long, Chem. Sci.,
2015, 6, 5499.
15 Y. Liu, X. Xu, F. Zheng, Y. Cui, Angew. Chem., Int. Ed., 2008, 120, 4614.
16 J. X. Jiang, F. Su, A. Trewin, C. D. Wood, H. Niu, J. T. Jones, A. I. Cooper,
J. Am. Chem. Soc., 2008, 130, 7710.
17 S. H. Lim, Y. Su, S. M. Cohen, Angew. Chem., Int. Ed., 2012, 51, 5106.
18 a) M. G. Rabbani, H. M. El-Kaderi, Chem. Mater., 2012, 24, 1511; b) J.-X.
Jiang, F. Su, A. Trewin, C. D. Wood, H. Niu, J. T. A. Jones, Y. Z. Khimyak,
A. I. Cooper, J. Am. Chem. Soc.,2008, 130, 7710.
19 a) W. Lu, Z. Wei, D. Yuan, J. Tian, S. Fordham, H.-C. Zhou, Chem.
Mater.,2014, 26, 4589; b) J. X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L.
Campbell, H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z.
Khimyak, A. I. Cooper, Angew. Chem., Int. Ed., 2007, 46, 8574; c) X.
Zhuang, F. Zhang, D. Wu, N. Forler, H. Liang, M. Wagner, D. Gehrig, M.
R. Hansen, F. Laquai, X. Feng, Angew. Chem., Int. Ed., 2013, 52, 9668; d)
X. Zhuang, F. Zhang, D. Wu, X. Feng, Adv. Mater., 2014, 26, 3081; e) X.
Zhuang, D. Gehrig, N. Forler, H. Liang, M. Wagner, M. R. Hansen, F.
Laquai, F. Zhang, X. Feng, Adv. Mater., 2015, 27, 3789; f) Y. Su, Z. Yao, F.
Acknowledgements
This work was financially supported by the National Basic Research
Program of China (973 Program: 2013CBA01602, 2012CB933404),
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins