and consequently attack at the ZnII ion, resulting in increased
emission intensity (Fig. S4 and S7, ESIw).32,36 Subsequent
addition of DCP leads, due to the phosphorylation of the
N-atoms, to a decreased emission intensity (Fig. S4, ESIw).24
Most probably, an internal charge transfer (ICT) from the
electron-rich chromophore to the electron-accepting pyridinium
moiety occurs, as indicated also by the red-shift in the UV-Vis
absorption spectrum (Fig. S6, ESIw).4,24,37 Performing an
analogue experiment with 8, the addition of 10 equivalents
DCP caused already decreased emission intensity (Fig. S7b,
ESIw). Since in 8 no weakly bound acetate ions are present,
DCP directly phosphorylates the pyridine of a dissociated ZnII
bisterpyridine complex. To prove this assumption, DCP was
added to 7 and also here instantly the emission intensity
decreased (Fig. S7c, ESIw). To exclude a potential N-protonation
upon DCP hydrolysis, the reaction of 8 with DCP was
accomplished again in a buffered solution at pH = 7.0.
A similar observation could be found, underlining the robustness
of the detection system (Fig. S7d, ESIw). The Tabun mimic DCNP
exhibits similar detection behavior, as proven in the reaction
with 8. However, the cyanide ions formed upon DCNP hydrolysis
complex the ZnII ions, accelerating the phosphorylation of the
N-atoms (Fig. S8, ESIw).
Moreover, a straightforward protocol for the detection of
organophosphonates in the gas phase was established. Two
filter papers were dipped into a 10ꢀ5 M solution of 8 and
NaOH. Both test stripes were placed into a small sample vial
and these were transferred into a larger vial (Fig. 4b). Into one
of these larger vials 5 mL of DMMP were added and the vials
were closed. After 10 minutes, the test stripes were taken out and
irradiated with UV light (lex = 365 nm). The dipstick exposed to
the DMMP atmosphere showed significantly enhanced emission
(Fig. 4c).
5 D. Knapton, M. Burnworth, C. Weder and S. J. Rowan, Angew.
Chem., Int. Ed., 2006, 45, 5825–5829.
6 G. N. Tew and R. Shunmugam, Chem.–Eur. J., 2008, 14,
5409–5412.
7 A. L. Jenkins, O. M. Uy and G. M. Murray, Anal. Chem., 1999, 71,
373–378.
8 C. M. Rudzinski, A. M. Young and D. G. Nocera, J. Am. Chem.
Soc., 2002, 124, 1723–1727.
9 T. J. Dale and J. Rebek, Angew. Chem., Int. Ed., 2009, 48,
7850–7852.
10 J. Rebek and T. J. Dale, J. Am. Chem. Soc., 2006, 128, 4500–4501.
11 J. M. Rathfon, Z. M. Al-Badri, R. Shunmugam, S. M. Berry,
S. Pabba, R. S. Keynton, R. W. Cohn and G. N. Tew, Adv. Funct.
Mater., 2009, 19, 689–695.
12 T. M. Swager and S. W. Zhang, J. Am. Chem. Soc., 2003, 125,
3420–3421.
13 I. Hamachi, S. Yamaguchi, L. Yoshimura, T. Kohira and
S. Tamaru, J. Am. Chem. Soc., 2005, 127, 11835–11841.
14 A. J. Russell, J. A. Berberich, G. E. Drevon and R. R. Koepsel,
Annu. Rev. Biomed. Eng., 2003, 5, 1–27.
15 J. A. Ashley, C. H. Lin, P. Wirsching and K. D. Janda, Angew.
Chem., Int. Ed., 1999, 38, 1793–1795.
16 H. Sohn, S. Letant, M. J. Sailor and W. C. Trogler, J. Am. Chem.
Soc., 2000, 122, 5399–5400.
17 J. Ngeh-Ngwainbi, P. H. Foley, S. S. Kuan and G. G. Guilbault,
J. Am. Chem. Soc., 1986, 108, 5444–5447.
18 C. Hartmann-Thompson, J. Hu, S. N. Kaganove, S. E. Keinath,
D. L. Keeley and P. R. Dvornic, Chem. Mater., 2004, 16,
5357–5364.
19 H. B. Kraatz, M. A. K. Khan, K. Keirman and M. Petryk, Anal.
Chem., 2008, 80, 2574–2582.
20 W. E. Steiner, C. S. Harden, F. Hong, S. J. Klopsch, H. H. Hill and
V. M. McHugh, J. Am. Soc. Mass Spectrom., 2006, 17, 241–245.
21 W. E. Steiner, S. J. Klopsch, W. A. English, B. H. Clowers and
H. H. Hill, Anal. Chem., 2005, 77, 4792–4799.
22 E. Climent, A. Marti, S. Royo, R. Martinez-Manez,
M. D. Marcos, F. Sancenon, J. Soto, A. M. Costero, S. Gil and
M. Parra, Angew. Chem., Int. Ed., 2010, 49, 5945–5948.
23 S. Royo, A. M. Costero, M. Parra, S. Gil, R. Martinez-Manez and
F. Sancenon, Chem.–Eur. J., 2011, 17, 6931–6934.
24 H. J. Kim, J. H. Lee, H. Lee, J. H. Lee, J. H. Lee, J. H. Jung and
J. S. Kim, Adv. Funct. Mater., 2011, 21, 4035–4040.
25 H. O. Michel, E. C. Gordon and J. Epstein, Environ. Sci. Technol.,
1973, 7, 1045–1049.
A p-conjugated PEG-functionalized water-soluble bister-
pyridine was synthesized and characterized. The corres-
ponding ZnII coordination polymer 8 and complex 9 were
utilized as fluorometric sensor materials for nerve gas G
mimics. Upon analyte addition (c = 10ꢀ7 to 10ꢀ6 M) the
emission intensity increased by a factor of 5 to 7. The different
reactivity of 8 and 9 towards DMMP and DCP allows a clear
distinction between both. To exclude a positive response
caused by inorganic phosphates or cyanides we set up a test
series to selectively determine them in aqueous solution. The
use of a test stripe, dipped into a mixture of polymer 8 and
NaOH, allows additionally the detection of organophosphonates
from the gas phase.
26 C.-L. Ho and W.-Y. Wong, Coord. Chem. Rev., 2011, 255,
2469–2502.
27 A. Wild, A. Winter, M. D. Hager and U. S. Schubert, ACS Comb.
Sci., 2011 submitted.
28 C. Y. Yi, C. Blum, M. Lehmann, S. Keller, S. X. Liu, G. Frei,
A. Neels, J. Hauser, S. Schurch and S. Decurtins, J. Org. Chem.,
2010, 75, 3350–3357.
29 A. Wild, A. Winter, F. Schlutter and U. S. Schubert, Chem. Soc.
Rev., 2011, 40, 1459–1511.
¨
30 A. J. Weerasinghe, C. Schmiesing and E. Sinn, Tetrahedron, 2011,
67, 2833–2838.
31 S. H. Jang, Y. D. Koh, J. H. Kim, J. H. Park, C. Y. Park,
S. J. Kim, S. D. Cho, Y. C. Ko and H. L. Sohn, Mater. Lett.,
2008, 62, 552–555.
32 K. Kim, O. G. Tsay, D. A. Atwood and D. G. Churchill, Chem.
Rev., 2011, 111, 5345–5404.
33 S. S. Lehrer and G. D. Fasman, Biochem. Biophys. Res. Commun.,
1966, 23, 133–138.
34 A. Coskun, B. T. Baytekin and E. U. Akkaya, Tetrahedron Lett.,
2003, 44, 5649–5651.
35 S. Mizukami, T. Nagano, Y. Urano, A. Odani and K. Kikuchi,
J. Am. Chem. Soc., 2002, 124, 3920–3925.
36 P. M. Beaujuge, C. M. Amb and J. R. Reynolds, Acc. Chem. Res.,
2010, 43, 1396–1407.
Financial support by the Dutch Polymer Institute (DPI,
technology area HTE) is kindly acknowledged. The authors
thank A. Baumgartel for the MALDI-TOF MS measurements.
¨
Notes and references
1 I. Willner, V. Pavlov and Y. Xiao, Nano Lett., 2005, 5, 649–653.
2 R. H. de Jong, Anesth. Analg., 2003, 96, 819–825.
3 F. R. Sidell and J. Borak, Ann. Emerg. Med., 1992, 21, 865–871.
4 S. Royo, R. Martinez-Manez, F. Sancenon, A. M. Costero,
M. Parra and S. Gil, Chem. Commun., 2007, 4839–4847.
37 W. Goodall and J. A. G. Williams, Chem. Commun., 2001,
2514–2515.
c
966 Chem. Commun., 2012, 48, 964–966
This journal is The Royal Society of Chemistry 2012