Page 9 of 11
Journal of the American Chemical Society
(2) Davis, B. G. Science 2004, 303, 480.
(3) Nilsson, B. L.; Soellner, M. B.; Raines, R. T. Annu. Rev. Biophys.
Biomol. Struct. 2005, 34, 91.
(4) Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471.
(5) Hackenberger, C. P. R.; Schwarzer, D. Angew. Chem. Int. Ed.
2008, 47, 10030.
(6) Stephanopoulos, N.; Francis, M. B. Nat. Chem. Biol. 2011, 7,
876.
(7) Ogunkoya, A. O.; Pattabiraman, V. R.; Bode, J. W. Angew. Chem.
Int. Ed. 2012, 51, 9693.
(8) Tam, J. P.; Xu, J.; Eom, K. D. Peptide Science 2001, 60, 194.
(9) Mao, H.; Hart, S. A.; Schink, A.; Pollok, B. A. J. Am. Chem. Soc.
2004, 126, 2670.
(10) Wang, P.; Dong, S.; Shieh, J.-H.; Peguero, E.; Hendrickson, R.;
Moore, M. A. S.; Danishefsky, S. J. Science 2013, 342, 1357.
(11) Payne, R. J.; Wong, C.-H. Chem. Commun. 2010, 46, 21.
(12) Scheck, R. A.; Francis, M. B. ACS Chem. Biol. 2007, 2, 247.
(13) Gamblin, D. P.; Scanlan, E. M.; Davis, B. G. Chem. Rev. 2008,
109, 131.
(14) Chalker, J. M.; Bernardes, G. J. L.; Davis, B. G. Acc. Chem. Res.
2011, 44, 730.
(15) Kiessling, L. L.; Splain, R. A. Annu. Rev. Biochem 2010, 79, 619.
(16) Dawson, P. E.; Kent, S. B. H. Annu. Rev. Biochem 2000, 69, 923.
(17) Raibaut, L.; Ollivier, N.; Melnyk, O. Chem. Soc. Rev. 2012, 41,
7001.
(18) Bode, J. W.; Fox, R. M.; Baucom, K. D. Angew. Chem. Int. Ed.
Engl. 2006, 45, 1248.
(19) Wang, T.; Danishefsky, S. J. J. Am. Chem. Soc. 2012, 134,
13244.
(20) Shen, B.; Makley, D. M.; Johnston, J. N. Nature 2010, 465,
1027.
(21) Noda, H.; Eros, G.; Bode, J. W. J. Am. Chem. Soc. 2014, 136,
5611.
(22) Pattabiraman, V. R.; Ogunkoya, A. O.; Bode, J. W. Angew.
Chem. Int. Ed. 2012, 51, 5114.
(23) Aimoto, S. Peptide Sci. 1999, 51, 247.
(24) Payne, R. J.; Ficht, S.; Greenberg, W. A.; Wong, C.-H. Angew.
Chem. Int. Ed. 2008, 47, 4411.
(25) Dawson, P. E.; Muir, T. W.; Clark-Lewis, I.; Kent, S. B. Science
1994, 266, 776.
(26) Saxon, E.; Armstrong, J. I.; Bertozzi, C. R. Org. Lett. 2000, 2,
2141.
(27) Nilsson, B. L.; Kiessling, L. L.; Raines, R. T. Org. Lett. 2000, 2,
1939.
(28) Kemp, D. S. Biopolymers 1981, 20, 1793.
(29) Coltart, D. M. Tetrahedron 2000, 56, 3449.
(30) Li, X.; Lam, H. Y.; Zhang, Y.; Chan, C. K. Org. Lett. 2010, 12,
1724.
(31) Zhang, Y.; Xu, C.; Lam, H. Y.; Lee, C. L.; Li, X. Proc. Natl. Acad.
Sci. U. S. A. 2013, 110, 6657.
(32) Kemp, D. S.; Vellaccio, F., Jr. J. Org. Chem. 1975, 40, 3003.
(33) Kemp, D. S.; Grattan, J. A.; Reczek, J. J. Org. Chem. 1975, 40,
3465.
(34) Ishiwata, A.; Ichiyanagi, T.; Takatani, M.; Ito, Y. Tetrahedron
Lett. 2003, 44, 3187.
(35) Durek, T.; Alewood, P. F. Angew. Chem. Int. Ed. 2011, 50,
12042.
(36) McGrath, N. A.; Raines, R. T. Acc. Chem. Res. 2011, 44, 752.
(37) Mautner, H. G.; Chu, S.-H.; Gunther, W. H. H. J. Am. Chem.
Soc. 1963, 85, 3458.
(38) Chu, S.-H.; Mautner, H. G. J. Org. Chem. 1966, 31, 308.
(39) Liu, C.-F.; Tam, J. P. J. Am. Chem. Soc. 1994, 116, 4149.
(40) Liu, C. F.; Tam, J. P. Proc. Natl. Acad. Sci. USA 1994, 91, 6584.
(41) Holmquist, B.; Bruice, T. C. J. Am. Chem. Soc. 1969, 91, 2985.
analysis was performed on Agilent 1100 Series LCMSD VL MS
Spectrometer. Proton NMR spectra of selenoesters were record-
ed on a Bruker AVANCE 400 MHz spectrometer.
1
2
3
4
5
6
7
8
Peptide synthesis. Peptides were synthesized on a CEM Lib-
erty microwave peptide synthesizer using Fmoc solid-phase
chemistry on Rink amide resin and purified by reversed-phase
HPLC. The identity and the purity of the peptides were con-
firmed by ESI-MS.
General procedure for synthesis of thiobenzaldehyde and
selenobenzaldehyde esters: Amino acid (AA)/peptide (1
mmol) was dissolved in anhydrous THF (5 mL) in an oven-dried
round bottom flask under N2. The resulting solution was stirred
and cooled at 0 °C in ice-bath for 10 min. Then, DCC (1 mmol)
was added at 0 °C. The reaction was stirred at 0 °C for 30 min.
Then, di-thio (6) or di-seleno benzaldehyde (7) (0.5 mmol),
TCEP⋅HCl (0.6 mmol), Et3N (0.6 mmol) and 2 drops of water
were added. The resulting reaction mixture was stirred at room
temperature for 30 min. The reaction was then cooled in ice bath
and filtered to remove dicyclohexyl urea. The filtrate was concen-
trated under vacuum and purified by flash chromatography or
HPLC to give AA/peptide-thio-benzaldehyde or AA/peptide-
seleno-benzaldehyde ester, respectively as pale yellow solid (55-
70% yield).
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
General procedure for the Aldehyde Capture Ligation: To
a solution of C-terminal amino acid or peptide-oxo, thio or seleno
ester (2-10 µmol) in 1 mL DMF, was added N-terminal amino
acid or peptide (2 eq) and Et3N (2 eq). The reaction was stirred
at 22 °C.
Analytical analysis of ACL reactions: For determination of
reaction rates, the reaction mixture was diluted 20-fold in acetoni-
trile and kept over dry-ice until HPLC analysis. HPLC (C-18
columns): 0.1% TFA (v/v) in water (solvent A): acetonitrile
(solvent B); gradient 45-85 % in 30 min, flow rate = 0.5 mL/min,
detection wavelength 280 nm.
ASSOCIATED CONTENT
Supporting Information.
Supporting Figures and experimental procedures and analytical data
for new compounds. This material is available free of charge via the
AUTHOR INFORMATION
Corresponding Author
Present Addresses
†Department of Chemistry & Biochemistry, Seton Hall University,
South Orange, NJ 07079.
Author Contributions
‡These authors contributed equally to this work.
ACKNOWLEDGMENTS
We thank the US National Science Foundation (CHE-1506854) for
funding. P.S.A. thanks Anna Mapp, Laura Kiessling and Neville Kal-
lenbach for helpful suggestions.
REFERENCES
(1) Muir, T. W. Annu. Rev. Biochem. 2003, 72, 249.
9
ACS Paragon Plus Environment