C O M M U N I C A T I O N S
tion. The system presented replaces the covalent sugar-phosphate
scaffold of DNA with a noncovalently assembled phospholipid surface
that also permits partial hydrophobic burial of the hydrogen-bonding
groups upon heteromeric membrane apposition, similar to base-stacking
and pairing. This finding underscores the presence of discriminating
molecular recognition between two membrane surfaces which serves
to optimize H-bond donor-acceptor interactions in both inter and
intramembrane contexts and to minimize repulsive lone-pair interac-
tions found in homomeric lipid hydrogen-bonding.
Finally, this study illustrates the general possibility of designing
selective hydrogen-bonding adhesive interactions from simple
starting materials at other polar-apolar interfaces;23 this could have
a numerous materials and biotechnological applications.1,24
Acknowledgment. This work was supported in part by the
University of Texas (A.P.), The Ohio State University, and an NSF-
CAREER award to D.B. We thank the Structural Biology Imaging
Center of University of Texas Health Science Center at Houston
and the Ohio Bioproducts Innovation Center for support of the
instrumentation used in this study.
Figure 5. (Top left) Cryo-EM of 1 LUVs, (top right) 2 LUVs, (lower left)
1 + 2 premixed 1:1, (lower right) product of 1 LUVs reacted with 2 LUVs;
round objects are gold beads. Scale bars (100 nm) in left panels apply to
each row. All samples were prepared at room temperature.
Supporting Information Available: Synthetic and experimental
procedures, lipid NMR and MS characterization, additional DLS, DSC,
ITC, and cryo-EM data. This material is available free of charge via
of 1 and 2 appear morphologically similar and indeed are mostly
unilamellar, dissociated vesicles that can be found as aggregates
as well (Figure 5), consistent with DLS measurements. However,
the structures derived from a 1:1 mixture of the two lipids, as well
as the fusion product, are strikingly distinct from the pure vesicles
and mechanistically suggestive. While the pure lipids produce
vesicular structures that are mostly unilamellar, both the “premixed”
lipids and the products of vesicle reaction appear to be in the
hexagonal phase. Clear signatures of the hexagonal phase (presum-
ably HII) are observed as regular striations and lipidic structures
consistent with interlamellar attachment sites (Figure 5).19,20 Some
products of vesicle fusion are a combination of dense multilamellar
vesicles that contain HII phases within, while others appeared to
be vesicles in the process of fusing (Supporting Information).
Formation of a hexagonal phase is expected with strong lipid-lipid
hydrogen bonding at the lipid-water interface as H-bonding between
headgroups results in desolvation of the surface, which in turn
permits high surface curvature and close membrane apposition
through thinning of the repulsive hydration layer.5 Dehydration of
the membrane and formation of the HII phase should be entropically
favorable,19 consistent with the ITC results. The lamellar (LR) to
HII transition of the fused or mixed product of 1 and 2 is likely the
low-temperature broad transition21 seen at 22 °C in the DSC and
pyrene melt experiments. This could also explain the paradoxical
observation of seemingly decreased aggregation and faster lipid
mixing at 25 versus 10 °C. Fusion at 10 °C results in larger vesicles
while fusion at 25 °C produces dense HII phase particles that scatter
light similarly to the starting vesicles (Figure 5). Thus, apposition
has not decreased at higher temperature, but simply become less
detectable by DLS. This is consistent with the reaction thermody-
namics, which indicate equally facile interaction at both tempera-
tures. Moreover, though not detected by DSC, it is possible that
vesicles of 1 and 2 transition from the LR to HII phase around 40
°C, leading to the entropy-neutral reaction found by ITC. The
structural and functional similarities between the 1 + 2 premixed
suspensions and reacted 1 + 2 LUVs clearly demonstrate the notion
that designed H-bond donor-acceptor interactions at the lipid-water
interface can drive both intramembrane and intermembrane chemistry.
Though there are relatively few reports of designed, non-native
aqueous phase hydrogen-bond recognition,6,22 this is commonly
observed in native systems, most prominently in nucleic acid recogni-
References
(1) Mammen, M.; Choi, S.-K.; Whitesides, G. M. Angew. Chem., Int. Ed. 1998,
37, 2754–2794.
(2) Gong, Y.; Ma, M.; Luo, Y.; Bong, D. J. Am. Chem. Soc. 2008, 130, 6196–
6205.
(3) Gong, Y.; Luo, Y.; Bong, D. J. Am. Chem. Soc. 2006, 128, 14430–14431.
(4) Chan, Y.-H. M.; van Lengerich, B.; Boxer, S. G. Biointerphases 2008, 3,
17–21. Stengel, G.; Zahn, R.; Hook, F. J. Am. Chem. Soc. 2007, 129, 9584–
9585.
(5) Boggs, J. M. Biochim. Biophys. Acta 1987, 906, 353–404.
(6) Ariga, K.; Kunitake, T. Acc. Chem. Res. 1998, 31, 371–378.
(7) Kawasaki, T.; Tokuhiro, M.; Kimizuka, N.; Kunitake, T. J. Am. Chem.
Soc. 2001, 123, 6792–6800. Kimizuka, N.; Kawasaki, T.; Hirata, K.;
Kunitake, T. J. Am. Chem. Soc. 1998, 120, 4094–4104.
(8) Nowick, J. S.; Cao, T.; Noronha, G. J. Am. Chem. Soc. 1994, 116, 3285–
3289. Nowick, J. S.; Chen, J. S. J. Am. Chem. Soc. 1992, 114, 1107–1108.
(9) Menger, F. M.; Zhang, H. J. Am. Chem. Soc. 2006, 128, 1414–1415.
(10) Paleos, C. M.; Tsiourvas, D. J. Mol. Recognition 2006, 19, 60–67. Berti,
D.; Baglioni, P.; Bonaccio, S.; Barsacchi-Bo, G.; Luisi, P. L. J. Phys. Chem.
B 1998, 102, 303–308.
(11) Lim, C. W.; Crespo-Biel, O.; Stuart, M. C. A.; Reinhoudt, D. N.; Huskens,
H.; Ravoo, B. J. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 6986–6991.
Waggoner, T. A.; Last, J. A.; Kotula, P. G.; Sasaki, D. Y. J. Am. Chem.
Soc. 2001, 123, 496–497.
(12) Mart, R. J.; Liem, K. P.; Wang, X.; Webb, S. J. J. Am. Chem. Soc. 2006,
128, 14462–14463.
(13) Marchi-Artzner, V.; Gulik-Krzywicki, T.; Guedeau-Boudeville, M.-A.;
Gosse, C.; Sanderson, J. M.; Dedieu, J.-C.; Lehn, J.-M. ChemPhysChem
2001, 2, 367–376.
(14) Fyfe, M. C. T.; Stoddart, J. F. Acc. Chem. Res. 1997, 30, 393–401.
(15) ten Cate, M. G. J.; Huskens, J.; Crego-Calama, M.; Reinhoudt, D. N.
Chem.sEur. J. 2004, 10, 3632–3639.
(16) Galla, H. J.; Hartmann, W. Chem. Phys. Lipids 1980, 27, 199–219.
(17) Sorrells, J. L.; Menger, F. M. J. Am. Chem. Soc. 2008, 11.
(18) Nieba, L.; Krebber, A.; Plockthun, A, Anal. Biochem. 1996, 234, 155–165.
(19) Epand, R. M. Methods Mol. Biol. 2007, 400, 15–26.
(20) Frederik, P. M.; Burger, K. N. J.; Stuart, M. C. A.; Verkleij, A. J. Biochim.
Biophys. Acta 1991, 1062, 133–141.
(21) Wenk, M. R.; Seelig, J. Biochim. Biophys. Acta 1998, 1372, 227–36.
(22) Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W. Angew. Chem., Int. Ed.
2007, 46, 2366–2393. Brunsveld, L.; Vekemans, J. A.; Hirschberg, J. H.;
Sijbesma, R. P.; Meijer, E. W. Proc. Natl. Acad. Sci. U.S.A. 2002, 99,
4977–4982. Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P.
Chem. ReV. 2001, 101, 4071–4098. Hirschberg, J. H.; Brunsveld, L.; Ramzi,
A.; Vekemans, J. A.; Sijbesma, R. P.; Meijer, E. W. Nature 2000, 407,
167–170. Kato, Y.; Conn, M. M.; Rebek, J., Jr Proc. Natl. Acad. Sci. U.S.A.
1995, 92, 1208–1212. Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee,
D. E.; Khazanovich, N. Nature 1993, 366, 324–327.
(23) Joh, N. H.; Min, A.; Faham, S.; Whitelegge, J. P.; Yang, D.; Woods, V. L.;
Bowie, J. U. Nature 2008, 453, 1266–1270. Grigoryan, G.; DeGrado, W. F.
Nat. Chem. Biol. 2008, 4, 393–394.
(24) Madueno, R.; Raisanen, M. T.; Silien, C.; Buck, M. Nature 2008, 454,
618–621. Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M. R. Angew.
Chem., Int. Ed. 2001, 40, 988–1011.
JA806954U
9
14458 J. AM. CHEM. SOC. VOL. 130, NO. 44, 2008