ω
Oxidations of N -Hydroxyarginine Analogues
Chem. Res. Toxicol., Vol. 14, No. 2, 2001 209
derived from the oxidase function of NOS II. Only few of
(15) Bec, N., Gorren, A. C. F., Voelker, C., Mayer, B., and Lange, R.
(1998) Reaction of neuronal nitric-oxide synthase with oxygen at
them are selective monooxygenations performed by the
low temperature. Evidence for reductive activation of the oxy-
ferrous complex by tetrahydrobiopterin. J . Biol. Chem. 273,
13502-13508.
II
NOS Fe -O
2
species, which exclusively occur with
is present. These
NOHA, homo-NOHA, and 8, when BH
4
results suggest a possible implication of NOSs in the
oxidative metabolism of certain classes of xenobiotics not
only via their monooxygenase function, as previously
mentioned (case of 8; 21) but also via their oxidase
function. In fact, oxidation of exogenous N-hydroxy-
guanidines, which are not substrates of the NOS mo-
nooxygenase function and which lead to easily detected
ureas or cyanamides because of the NOS oxidase func-
(16) Raman, C. S., Li, H., Martasek, P., Kral, V., Masters, B. S. S.,
and Poulos, T. L. (1998) Crystal structure of constitutive endot-
helial nitric oxide synthase: A paradigm for pterin function
involving a novel metal center. Cell 95, 939-950.
(
17) Crane, B. R., Arvai, A. S., Ghosh, D. K., Wu, C. Q., Getzoff, E.
D., Stuehr, D. J ., and Tainer, J . A. (1998) Structure of nitric oxide
synthase oxygenase dimer with pterin and substrate. Science 279,
2
121-2126.
(
18) Moali, C., Boucher, J . L., Sari, M. A., Stuehr, D. J ., and Mansuy,
D. (1998) Substrate specificity of NO synthases: Detailed com-
•
-
ω
tion, could be used to evaluate O
II. Finally, our results provide a further clear illustration
of the key role of BH in regulating the monooxygenase/
2
formation by NOS
parison of L-arginine, homo-L-arginine, their N -hydroxy deriva-
ω
tives, and N -hydroxynor-L-arginine. Biochemistry 37, 10453-
1
0460.
4
(
(
(
19) Grant, S. K., Green, B. G., Stiffey-Wilusz, J ., Durette, P. L., Shah,
S. K., and Kozarich, J . W. (1998) Structural requirements for
human inducible nitric oxide synthase substrates and substrate
analogue inhibitors. Biochemistry 37, 4174-4180.
oxidase ratio in NOS (23, 29, 39, 45-47).
Ack n ow led gm en t. This work was supported by
grants from the National Institutes of Health (Grant CA
20) Olken, N. M., Osawa, Y., and Marletta, M. A. (1994) Character-
G
ization of the inactivation of nitric oxide synthase by N -methyl-
5
3914 to D.J .S.) and from the Minist e` re de l’′Enseigne-
L-arginine: Evidence for heme loss. Biochemistry 33, 14784-
ment Sup e´ rieur et de la Recherche (to C.M. and A.R.-
C.). We thank Qian Wang, Christine Curran, and Abby
Meade for excellent technical assistance.
1
4791.
21) Renodon-Corni e` re, A., Boucher, J . L., Dijols, S., Stuehr, D. J ., and
Mansuy, D. (1999) Efficient formation of nitric oxide from selective
oxidation of N-aryl N′-hydroxyguanidines by inducible nitric oxide
synthase. Biochemistry 38, 4663-4668.
Refer en ces
(22) Pou, S., Pou, W. S., Bredt, D. S., Snyder, S. H., and Rosen, G. M.
(
1992) Generation of superoxide by purified brain nitric oxide
(
1) Pfeiffer, S., Mayer, B., and Hemmens, B. (1999) Nitric oxide:
Chemical puzzles posed by a biological messenger. Angew. Chem.,
Int. Ed. 38, 1714-1731.
synthase. J . Biol. Chem. 267, 24173-24176.
(
23) Vasquez-Vivar, J ., Kalyanaraman, B., Martasek, P., Hogg, N.,
Masters, B. S. S., Karoui, H., Tordo, P., and Pritchard, K. A. (1998)
Superoxide generation by endothelial nitric oxide synthase: The
influence of cofactors. Proc. Natl. Acad. Sci. U.S.A. 95, 9220-
(
2) F o¨ rstermann, U., Gath, I., Schwarz, P., Closs, E. I., and Kleinert,
H. (1995) Isoforms of nitric oxide synthase. Properties, cellular
distribution and expressional control. Biochem. Pharmacol. 50,
9
225.
1
321-1332.
(
24) Mayer, B., J ohn, M., Heinzel, B., Werner, E. R., Wachter, H.,
Schultz, G., and B o¨ hme, E. (1991) Brain nitric oxide synthase is
a biopterin- and flavin-containing multi-functional oxido-reduc-
tase. FEBS Lett. 288, 187-191.
(3) Kerwin, J . F., Lancaster, J . R., and Feldman, P. L. (1995) Nitric
oxide: A new paradigm for second messengers. J . Med. Chem.
3
8, 4343-4362.
(4) Stuehr, D. J ., Kwon, N. S., Nathan, C. F., Griffith, O. W.,
ω
(25) Heinzel, B., J ohn, M., Klatt, P., B o¨ hme, E., and Mayer, B. (1992)
Feldman, P. L., and Wiseman, J . (1991) N -Hydroxy-L-arginine
2
+
Ca /Calmodulin-dependent formation of hydrogen peroxide by
brain nitric oxide synthase. Biochem. J . 281, 627-630.
is an intermediate in the biosynthesis of nitric oxide from
L-arginine. J . Biol. Chem. 266, 6259-6263.
(
26) Culcasi, M., Lafon-Cazal, M., Pietri, S., and Bockaert, J . (1994)
Glutamate receptors induce a burst of superoxide via activation
of nitric oxide synthase in arginine-depleted neurons. J . Biol.
Chem. 269, 12589-12593.
27) Xia, Y., Dawson, V. L., Dawson, T. M., Snyder, S. H., and Zweier,
J . L. (1996) Nitric oxide synthase generates superoxide and nitric
oxide in arginine-depleted cells leading to peroxynitrite-mediated
cellular injury. Proc. Natl. Acad. Sci. U.S.A. 93, 6770-6774.
(
5) Abu-Soud, H. M., Presta, A., Mayer, B., and Stuehr, D. J . (1997)
Analysis of neuronal NO synthase under single-turnover condi-
ω
tions: Conversion of N -hydroxyarginine to nitric oxide and
citrulline. Biochemistry 36, 10811-10816.
(
(
6) Baek, K. J ., Thiel, B. A., Lucas, S., and Stuehr, D. J . (1993)
Macrophage nitric oxide synthase subunits. Purification, char-
acterization, and role of prosthetic groups and substrate in
regulating their association into a dimeric enzyme. J . Biol. Chem.
2
68, 21120-21129.
(28) Xia, Y., and Zweier, J . L. (1997) Superoxide and peroxynitrite
generation from inducible nitric oxide synthase in macrophages.
Proc. Natl. Acad. Sci. U.S.A. 94, 6954-6958.
(29) Mayer, B., and Hemmens, B. (1997) Biosynthesis and action of
nitric oxide in mammalian cells. Trends Biochem. Sci. 22, 477-
481.
(
7) Klatt, P., Schmid, M., Leopold, E., Schmidt, K., Werner, E. R.,
and Mayer, B. (1994) The pteridine binding site of brain nitric
oxide synthase. Tetrahydrobiopterin binding kinetics, specificity,
and allosteric interaction with the substrate domain. J . Biol.
Chem. 269, 13861-13866.
(
8) Marletta, M. A. (1993) Nitric oxide synthase structure and
(30) Rusche, K. M., Spiering, M. M., and Marletta, M. A. (1998)
Reactions catalyzed by tetrahydrobiopterin-free nitric oxide syn-
thase. Biochemistry 37, 15503-15512.
mechanism. J . Biol. Chem. 268, 12231-12234.
(9) Feldman, P. L., Griffith, O. W., and Stuehr, D. J . (1993) The
surprising life of nitric oxide. Chem. Eng. News 71, 26-38.
(31) Wallace, G. C., and Fukuto, J . M. (1991) Synthesis and bioactivity
ω
(
10) Korth, H. G., Sustmann, R., Thater, C., Butler, A. R., and Ingold,
of N -hydroxyarginine: A possible intermediate in the biosyn-
K. U. (1994) On the mechanism of the nitric oxide synthase-
thesis of nitric oxide from arginine. J . Med. Chem. 34, 1746-
1748.
ω
catalyzed conversion of N -hydroxy-L-arginine to citrulline and
nitric oxide. J . Biol. Chem. 269, 17776-17779.
(32) Moali, C., Brollo, M., Custot, J ., Sari, M. A., Boucher, J . L., Stuehr,
D. J ., and Mansuy, D. (2000) Recognition of R-amino acids bearing
various CdN-OH functions by nitric oxide synthase and arginase
involves very different structural determinants. Biochemistry 39,
8208-8218.
(
11) Mansuy, D., Boucher, J . L., and Clement, B. (1995) On the
mechanism of nitric oxide formation upon oxidative cleavage of
CdN(OH) bonds by NO-synthases and cytochromes P450. Bio-
chimie 77, 661-667.
(
12) Stuehr, D. J . (1997) Structure-function aspects in the nitric oxide
synthases. Annu. Rev. Pharmacol. Toxicol. 37, 339-359.
13) Presta, A., Weber-Main, A. M., Stankovich, M. T., and Stuehr,
D. J . (1998) Comparative effects of substrates and pterin cofactor
on the heme midpoint potential in inducible and neuronal nitric
oxide synthases. J . Am. Chem. Soc. 120, 9460-9465.
(33) Schantl, J . G., and T u¨ rk, W. (1989) 1-(4-Chlorophenyl)-3-hydrox-
yguanidin und O-acyl-derivate [1-(4-Chlorophenyl)-3-hydrox-
yguanidine and O-acyl derivative]. Sci. Pharm. 57, 375-380.
(34) Wu, C., Zhang, J ., Abu-Soud, H., Ghosh, D. K., and Stuehr, D. J .
(1996) High-level expression of mouse inducible nitric oxide
synthase in Escherichia coli requires coexpression with calmodu-
lin. Biochem. Biophys. Res. Commun. 222, 439-444.
(
(14) Abu-Soud, H. M., Gachhui, R., Raushel, F. M., and Stuehr, D. J .
(
1997) The ferrous-dioxy complex of neuronal nitric oxide syn-
(35) Bradford, M. M. (1976) A rapid and sensitive method for the
quantitation of microgram quantities of protein utilizing the
principle of protein-dye binding. Anal. Biochem. 72, 248-252.
thase. Divergent effects of L-arginine and tetrahydrobiopterin on
its stability. J . Biol. Chem. 272, 17349-17353.