Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
3
4
and K. Burgess, Chem. Soc. Rev., 2013D,O4I2: ,107.170;3V(9ibe/wC) 7ASCr.tiCcGl0eu3Oo2n7,li9nLJe.
Ma, J. Zhao, B. Küçüköz, A. Karatay, M. Hayvali, H. G.
(Fig. 4f–i). Fluorescence microscopic images were obtained for
SG‐NH2‐3 under illumination with UV (330–385 nm), blue
(460–495 nm), and green (530–580 nm) light (Fig. 4j). The silica
gel particles are faintly colored under ambient light, though
show intense fluorescence under illumination with the light
sources. Importantly, the luminescence images are completely
consistent with the silhouette of the silica gel particles,
demonstrating the BODIPY is successfully loaded onto the
silica gel. The fluorescence quantum yield of SG‐NH2‐3 is 0.64,
shown to retain the fluorescence ability upon chemisorption
on the silica gel. SG‐NH2‐4 features a color variation: exhibiting
red luminescence at 596 nm with a fluorescence quantum
yield of 0.50 (Fig. 4e, S16, Table S8). Fluorescence microscopic
images for SG‐NH2‐4 are shown in Fig. 4k, which feature bright
luminescence images well corresponding to the contours of
the silica gel microspheres.
In conclusion, imine‐linked BODIPY dimers and oligomers
were designed and synthesized. The azine and 1,4‐
phenylenediimine bridged oligomers exhibited photophysical
properties drastically different from the precursors, suggesting
that the electronic structures of the BODIPY cores were
modified through π‐conjugation. Of note, azine‐bridged
oligomers 7cn (n = 2–6) underwent redshifts in emission up to
125 nm as the number of the BODIPY subunits increased. The
imine‐bridged oligomers emitted with fluorescence quantum
yields of 0.39–0.93, retaining moderate to intense
luminescence upon the imine introduction. Heterogeneous
imine‐bond formation was applied in immobilizing BODIPY
dyes on a solid support: NH2‐passivated silica gel and
formylated BODIPYs were allowed to react, such that the
BODIPYs were bound promptly. The modified silica gel
fluoresced with quantum yields of 0.50–0.64, and
demonstrated much more robust retention of the BODIPY dyes
against methanol flushing than BODIPY dyes physisorbed on
silica gel. The present research has demonstrated the
versatility and compatibility of applying imine linkage to
BODIPYs, and broadened the chemistry of both imine and
BODIPY, contributing to the development of photofunctional
assemblies and materials.
Yaglioglu and A. Elmali, Chem. Sci., 2014,
5, 489; (c) X. Cui, C.
Zhang, K. Xu and J. Zhao, J. Mater. Chem. C, 2015,
3
, 8735.
(a) R. Ziessel, G. Ulrich, A. Haefele and A. Harriman, J. Am.
Chem. Soc., 2013, 135, 11330; (b) J. Iehl, J. F. Nierengarten, A.
Harriman, T. Bura and R. Ziessel, J. Am. Chem. Soc., 2012,
134, 988; (c) R. Ziessel and A. Harriman, Chem. Commun.,
2011, 47, 611; (d) S. Rihn, M. Erdem, A. De Nicola, P.
Retailleau, R. Ziessel, Org. Lett., 2011, 13, 1916.
5
6
(a) A. Burghart, L. H. Thoresen, J. Chen, K. Burgess, F.
Bergström and L. B.‐Å. Johansson, Chem. Commun., 2000, 22
2203; (b) S. Kolemen, Y. Cakmak, Z. Kostereli and E. U.
Akkaya, Org. Lett., 2014, 16, 660.
,
(a) N. Sakamoto, C. Ikeda, M. Yamamura and T. Nabeshima,
Chem. Commun., 2012, 48, 4818; (b) Y. Hayashi, S.
Yamaguchi, W. Y. Cha, D. Kim and H. Shinokubo, Org. Lett.,
2011, 13, 2992; (c) Y. Cakmak and E. U. Akkaya, Org. Lett.,
2009, 11, 85; (d) F. E. Alemdaroglu, S. C. Alexander, D. Ji, D. K.
Prusty, M. Bo
̈
rsch and A. Herrmann, Macromolecules, 2009,
ring, J. Ahrens, A.
42, 6529; (e) A. B. Nepomnyashchii, M. Bro
̈
J. Bard, J. Am. Chem. Soc., 2011, 133, 8633; (f) A. Nagai and Y.
Chujo, Macromolecules, 2010, 43, 193; (g) V. R. Donuru, G. K.
Vegesna, S. Velayudham, S. Green and H. Liu, Chem. Mater.,
2009, 21, 2130; (h) J. Ahrens, B. Haberlag, A. Scheja, M.
Tamm and M. Bröring, Chem. Eur. J., 2014, 20, 2901; (i) S. Yin,
V. Leen, C. Jackers, D. Beljonne, Van B. Averbeke, M. Van der
Auweraer, N. Boens and W. Dehaen, Chem. Eur.
J., 2011, 17, 13247; (j) J. Ahrens, B. Boeker, K. Brandhorst, M.
Funk and M. Broering, Chem. Eur. J., 2013, 19, 11382; (k) H.
Maeda, Y. Nishimura, S. Hiroto, H. and Shinokubo, Dalton
Trans., 2013, 42, 15885; (l) R. Sharma, H. B. Gobeze, F.
D'Souza and M. Ravikanth, ChemPhysChem, 2016, 17, 2516;
(m) J. Ahrens, B. Cordes, R. Wicht, B. Wolfram, M. Broering,
Chem. Eur. J., 2016, 22, 10320; (n) J. Uchida, T. Nakamura, M.
Yamamura, G. Yamaguchi and T. Nabeshima, Org. Lett., 2016,
18, 5380; (o) S. Kusaka, R. Sakamoto, Y. Kitagawa, M.
Okumura and H. Nishihara, Chem. Asian J., 2013,
R. W. Layer, Chem. Rev., 1963, 63, 489.
8, 723.
7
8
(a) M. E. Belowich and J. F. Stoddart, Chem. Soc. Rev., 2012,
41, 2003; (b) X. Su and I. Aprahamian, Chem. Soc. Rev., 2014,
43, 1963; (c) Y. Jin, C. Yu, R. J. Denman and W. Zhang, Chem.
Soc. Rev., 2013, 42, 6634; (d) S. J. Rowan, S. J. Cantrill, G. R. L.
Cousins, J. K. M. Sanders and J. F. Stoddart, Angew. Chem. Int.
Ed., 2002, 41, 898.
9
(a) A. N. Bourque, S. Dufresne and W. G. Skene, J. Phys.
Chem. C, 2009, 113, 19677; (b) M. L. Petrus, R. K. M. Bouwer,
U. Lafont, S. Athanasopoulos, N. C. Greenham and T. J.
The present article was supported by JST PRESTO Grant
Number JPMJPR1516, Japan. This work was also supported by
JSPS KAKENHI Grant Numbers JP17H05354, JP17H03028,
Dingemans, J. Mater. Chem. A, 2014, 2, 9474; (c) A. Bolduc, A.
Al Ouahabi, C. Mallet and W. G. Skene, J. Org. Chem., 2013,
78, 9258 (d) S. A. P. Guarìn, M. Bourgeaux, S. Dufresne and
W. G. Skene, J. Org. Chem., 2007, 72, 2631.
JP16H00900,
JP26220801. R.S. acknowledges The Asahi Glass Foundation,
Foundation Advanced Technology Institute, Hitachi Metals
JP15H00862,
JP26708005,
JP26620039,
10 (a) S. Dufresne, I. U. Roche, T. Skalski and W. G. Skene, J.
Phys. Chem. C, 2010, 114, 13106; (b) Y. Dong, A. Bolduc, N.
McGregor and W. G. Skene, Org. Lett., 2011, 13, 1844; (c) M.
Mallet, A. Bolduc, S. Bishop, Y. Gautier, W. G. Skene, Phys.
Chem. Chem. Phys., 2014, 16, 24382; (d) S. Barik, T.
Bletzacker and W. G. Skene, Macromolecules, 2012, 45, 1165.
11 S. G. Telfer, T. M. McLean and M. R. Waterland, Dalton
Trans., 2011, 40, 3097.
Materials Science Foundation, The Murata Science Foundation,
and Kato foundation for Promotion of Science.
Notes and references
1
(a) A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891;
(b) R. Ziessel, G. Ulrich and A. Harriman, New J. Chem., 2007,
31, 496; (c) G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem.
Int. Ed., 2008, 47, 1184; (d) A. C. Benniston and G. Copley,
Phys. Chem. Chem. Phys., 2009, 11, 4124.
(a) T. Kowada, H. Maeda and K. Kikuchi, Chem. Soc. Rev.,
2015, 44, 4953; (b) N. Boens, V. Leen and W. Dehaen, Chem.
Soc. Rev., 2012, 41, 1130.
12 J. Rissler, Chem. Phys. Lett., 2004, 395, 92.
13 (a) H. Meier, U. Stalmach and H. Kolshorn, Acta Polym., 1997,
48, 379; (b) G. Klaerner and R. D. Miller, Macromolecules,
1998, 31, 2007.
14 E. Angeletti, C. Canepa, G. Martinetti and P. Venturello, J.
2
Chem. Soc. Perkin Trans., 1989, 1, 105.
4 | J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins