P. C. J. Kamer et al.
FULL PAPER
Experimental Section
[1]
a) M. van den Berg, A. J. Minnaard, R. M. Haak, M. Leeman,
E. P. Schudde, A. Meetsma, B. L. Feringa, A. H. M. de Vries,
C. E. P. Maljaars, C. E. Willans, D. Hyett, J. A. F. Boogers,
H. J. W. Henderickx, J. G. de Vries, Adv. Synth. Catal. 2003,
345, 308–322; b) M. T. Reetz, A. Meiswinkel, G. Mehler, K.
Angermund, M. Graf, W. Thiel, R. Mynott, D. G. Blackmond,
J. Am. Chem. Soc. 2005, 127, 10305–10313; c) S. Alexakis, J.
Burton, J. Vastra, C. Benhaim, X. Fournioux, A. van den Heu-
vel, J.-M. Leveque, F. Maze, S. Rosset, Eur. J. Org. Chem. 2000,
4011–4027; d) G. J. H. Buisman, P. C. J. Kamer, P. W. N. M.
van Leeuwen, Tetrahedron: Asymmetry 1993, 4, 1625–1634; e)
M. Baker, P. G. Pringle, J. Chem. Soc., Chem. Commun. 1991,
1292–1293. For a review see: M. van den Berg, B. L. Feringa,
A. J. Minnaard, in: Handbook of Homogeneous Hydrogenation
(Eds.: J. G. de Vries, C. J. Elsevier), Wiley-VCH, Weinheim,
Germany, 2007, vol. 3, P995–1028.
a) M. T. Reetz, Angew. Chem. Int. Ed. 2008, 47, 2556–2588; b)
D. Peña, A. J. Minnaard, J. A. F. Boogers, A. H. M. de Vries,
J. G. de Vries, B. L. Feringa, Org. Biomol. Chem. 2003, 1, 1087–
1089; c) M. T. Reetz, T. Sell, A. Meiswinkel, G. Mehler, Angew.
Chem. Int. Ed. 2003, 42, 790–793.
a) B. H. G. Swennenhuis, R. Chen, P. W. N. M. van Leeuwen,
J. G. de Vries, P. C. J. Kamer, Org. Lett. 2008, 10, 989–992; b)
General Remarks: All reactions were carried out under strictly oxy-
gen and water free conditions, using standard Schlenk techniques
under an atmosphere of purified nitrogen or argon. Chemical were
purchased in highest commercially available purity from Acros Chi-
mica, Aldrich Chemical Co., Biosolve, Fluka and Merck and were
used as received, unless indicated otherwise. Toluene and C6D6 was
distilled from sodium, diethyl ether and THF from sodium/benzo-
phenone, tertiary amines, dichloromethane and methanol were dis-
tilled from calcium hydride. Chlorodiphenylphosphane was freshly
distilled prior to use. (2R,4S,5R)-2-chloro-3,4-dimethyl-5-phenyl-
1,3,2-oxazaphospholidine (2) was synthesised according to a litera-
ture procedure.[38] Dr. N. Vautravers and Prof. D. Cole-Hamilton
are greatly acknowledged for a generous gift of (2R,5S)-1,3-diaza-
2-chloro-3-phenyl-2-phosphabicyclo[3.3.0]octane
(3).
4-hy-
[2]
[3]
[4]
droxyphenol, polymer-bound (1, 1% DVB-PS, 50–100 mesh,
0.91 mmol/g) was purchased from Aldrich. Polymer-supported tri-
phenylphosphane (E14, 1% DVB-PS, 100–200 mesh, 1.2–
1.5 mmol/g) was purchased from Acros Chimica and with the exep-
tion of A9, A10, A11 and A14, all other resin-bound ligands were
synthesised according to literature procedures.[3a] The monodentate
phosphites were synthesised according to literature procedures.[3a]
NMR spectra were recorded at room temperature on a Bruker Av-
ance 300, a Bruker Avance 400 NMR, a Varian Mercury 300 or a
Varian Inova 500 spectrometer. Positive chemical shifts (δ) are
given (in ppm) for high-frequency shifts relative to an 85% H3PO4
in D2O reference (31P). Gel-phase 31P NMR spectra of the resins
suspended in THF (using a D2O inner tube) or THF/C6D6 (8:1)
were recorded using standard NMR techniques. Elemental analyses
were carried out by H. Kolbe Mikroanalytisches Laboratorium,
Mülheim an der Ruhr, Germany.
R.
den Heeten,
B. H. G.
Swennenhuis,
P. W. N. M.
van Leeuwen, J. G. de Vries, P. C. J. Kamer, Angew. Chem. Int.
Ed. 2008, 47, 6602–6605.
a) C. Gennari, U. Piarulli, Chem. Rev. 2003, 103, 3071–3100;
b) M. Reetz, Angew. Chem. Int. Ed. 2001, 40, 284–310; c) K.
Ding, H. Du, Y. Yuan, J. Long, Chem. Eur. J. 2004, 10, 2872–
2884; d) J. G. de Vries, L. Lefort, Chem. Eur. J. 2006, 12, 4722–
4734; e) C. J. Jäkel, R. Paciello, Chem. Rev. 2006, 106, 2912–
2942; f) L. Lefort, J. A. F. Boogers, A. H. M. de Vries, J. G.
de Vries, Org. Lett. 2004, 6, 1733–1735.
a) O. Huttenloch, E. Laxman, H. Waldmann, Chem. Eur. J.
2002, 8, 4767–4780; b) A. Agarkov, S. J. Greenfield, T. Ohishi,
S. E. Collibee, S. R. Gilbertson, J. Org. Chem. 2004, 69, 8077–
8085; c) S. C. Gilbertson, S. E. Collibee, A. Agarkov, J. Am.
Chem. Soc. 2000, 122, 6522–6523; d) Y. Kobayashi, D. Tanaka,
H. Danjo, Y. Uozumi, Adv. Synth. Catal. 2006, 348, 1561–1566.
For reviews on polymer-supported catalysts, see: a) Chem. Rev.
2002, 102, issue 10; b) M. Guinó, K. K. Hii, Chem. Soc. Rev.
2007, 36, 608–617; c) J. Lu, P. H. Toy, Chem. Rev. 2009, 109,
815–838; d) D. E. Bergbreiter, J. Tian, C. Hongfa, Chem. Rev.
2009, 109, 530–582; e) I. Tóth, P. C. van Geem, in: Handbook
of Homogeneous Hydrogenation (Eds.: J. G. de Vries, C. J. El-
sevier), Wiley-VCH, Weinheim, 2007, vol. 3, p. 1421–1470.
a) Chiral Catalysts Immobilization and Recycling (Eds.: D. E.
De Vos, I. F. J. Vankelecom, P. A. Jacobs), Wiley-VCH,
Weinheim, Germany, 2000; b) A. F. Trindade, P. M. P. Gois,
C. A. M. Afonso, Chem. Rev. 2009, 109, 418–514.
[5]
[6]
Preparation of A9: 545 mg (0.50 mmol) 4-hydroxyphenol polymer-
bound resin (1) was washed with THF (3 ϫ 5 mL) and suspended
in 10 mL toluene. After 1 h 1.0 mL iPr2NEt (3.8 mmol, 7.6 equiv.)
was added, followed by 236 mg (2R,4S,5R)-2-chloro-3,4-dimethyl-
5-phenyl-1,3,2-oxazaphospholidine (2; 1.03 mmol, 2.07 equiv.). A
gentle flow of argon was bubbled through the mixture for several
5 min periods within 3 h, after which the reaction was allowed to
proceed for an additional 14 h. The suspension was filtered and the
resin washed with subsequently toluene, THF, DCM, Et2O, DCM
and Et2O (5 mL each) and dried under a gentle flow of argon,
followed by drying under vacuum. 31P NMR (THF/C6D6, 8:1):
141 ppm (broad singlet), 135 ppm (broad singlet); (10:18). Microa-
nalysis: found P 2.17%.
[7]
[8]
A10, A11 and A14: Were prepared in a similar manner, replacing 2
with the appropriate phosphorus-chloride reagent. A10: 31P NMR
(THF): 120 ppm. A11: 31P NMR (THF/C6D6, 8:1): 128 ppm. Mi-
croanalysis: found P 1.14%. A14: 31P NMR (THF/C6D6, 8:1):
112 ppm. Microanalysis: found P 2.46%.
a) B. Clapham, T. S. Reger, K. D. Janda, Tetrahedron 2001, 57,
4637–4662; b) C. R. Landis, T. P. Clark, Proc. Natl. Acad. Sci.
USA 2004, 101, 5428–5432; c) C. E. Song, J. W. Yang, E. J.
Roh, S. G. Lee, J. H. Ahn, H. Han, Angew. Chem. Int. Ed. 2002,
41, 3852–3854; d) S. R. Gilbertson, S. Yamada, Tetrahedron
Lett. 2004, 45, 3917–3920.
Supporting Information (see also the footnote on the first page of
this article): 31P NMR spectra for supported ligands A9, A10, A11
and A14 and for the supported palladium allyl heteroligand com-
plex, procedures for the catalytic reactions and the full data for the
performance of the heteroligand combinations studied.
[9]
a) W. Chen, S. M. Roberts, J. Whittall, Tetrahedron Lett. 2006,
47, 4263–4266; b) X.-P. Hu, J.-D. Huang, Q.-H. Zeng, Z.
Zheng, Chem. Commun. 2006, 293–295; c) A. Mandoli, M. Ca-
lamante, B. L. Feringa, P. Salvadoria, Tetrahedron: Asymmetry
2003, 14, 3647–3650; d) S. Doherty, E. G. Robins, I. Pal, C.
Newman, C. Hardacre, D. Rooney, D. A. Mooney, Tetrahe-
dron: Asymmetry 2003, 14, 1517–1527.
[10]
[11]
a) F. Bardella, R. Eritja, E. Pedroso, E. Giralt, Bioorg. Med.
Chem. Lett. 1993, 3, 2193–2196; b) C. R. Johnson, B. Zhang,
Tetrahedron Lett. 1995, 36, 9253.
a) N. Oka, T. Wada, K. Saigo, J. Am. Chem. Soc. 2003, 125,
8307–8317; b) G. Delapierre, J. M. Brunel, T. Constantieux, G.
Buono, Tetrahedron: Asymmetry 2001, 12, 1345–1352.
Acknowledgments
This work was supported by the Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO), Combinatorial Chemistry
program and by DSM Pharmaceutical Products, Inc.
5802
www.eurjoc.org
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2009, 5796–5803