effective competitor for hydrogen bonding interactions. Natural
systems, such as proteins, may have much higher affinities for
substrates like phosphate, but these proteins are generally highly
preorganized for a substrate. In an equilibrium speciation model of
seawater (pH 8–8.3) and freshwater (pH 7–8), the interaction of
per-en-a-Cyd with uranyl carbonate is strong enough to complex
70–75% of aqueous uranyl carbonate ion based on this thermody-
namic model.† Although there are several examples of hydrogen
bonding interactions with uranyl species, to our knowledge, this is
the first example of entirely outer-sphere coordination of a uranyl
carbonate complex.12
Notes and references
1 P. S. Ledvina, A. I. Tsai, Z. Wang, E. Koehl and F. A. Quiocho, Protein
Sci., 1998, 7, 2550; B. L. Jacobson and F. A. Quiocho, J. Mol. Biol.,
1988, 204, 783; A. D. Ferguson, E. Hofmann, J. W. Coulton, K.
Diederichs and W. Welte, Science, 1998, 282, 2215.
2 P. D. Beer and D. K. Smith, Prog. Inorg. Chem., 1997, 46, 1; K.
Connors, Chem. Rev., 1997, 5, 1325; R. Ludwig, Fresenius’ J. Anal.
Chem., 2000, 367, 103.
3 T. S. Snowden and E. V. Anslyn, Curr. Opin. Chem. Biol., 1999, 3, 740;
Y. Tsuji, M. Tokunaga and Y. Obora, Yuki Gosei Kagaku Kyokaishi,
2002, 60, 942; J. Yu, Y. Zhao, M. J. Holterman and D. L. Venton,
Bioorg. Med. Chem. Lett., 1999, 9, 2705.
4 P. A. Gale, Coord. Chem. Rev., 2000, 199, 181; P. A. Gale, Coord.
Chem. Rev., 2001, 213, 79; P. A. Gale, Coord. Chem. Rev., 2003, 240,
191.
5 D. R. Alston, P. R. Ashton, T. H. Lilley, J. F. Stoddart, R. Zarzycki, A.
M. Z. Slawin and D. J. Williams, Carbohydr. Res., 1989, 192, 259; B.
Siegel and R. Breslow, J. Am. Chem. Soc., 1975, 97, 6869.
6 D. L. Clark, D. E. Hobart and M. P. Neu, Chem. Rev., 1995, 95, 25.
7 G. Bernhard, G. Geipel, T. Reich, V. Brendler, S. Amayri and H.
Nitsche, Radiochim. Acta, 2001, 89, 511; A. Coda, A. D. Giusta and V.
Tazzoli, Acta Crystallogr., Sect. B, 1981, 37, 1496.
8 A mixture of per-6-iodo-6-deoxy-a-cyclodextrin in 1,2-diaminoethane
was heated at 60 °C for 14–16 h. The excess amine was evaporated and
50 mL of absolute EtOH were added. The precipitate which formed was
collected and washed with absolute EtOH to give the HI salt, which was
purified by chromatography on LH20 with water as the mobile phase.
MS is consistent in mass and isotope distribution with the proposed
formulation; P. Ashton, R. Koniger and J. Stoddart, J. Org. Chem.,
1996, 61, 903; B. I. Gorin, R. J. Riopelle and G. R. J. Thatcher,
Tetrahedron Lett, 1996, 37, 4647.
9 L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini and A. Vacca,
Coord. Chem. Rev., 1999, 184, 311; T. W. Newton and J. C. Sullivan,
in Actinide Carbonate Complexes in Aqueous Solution, ed. A. J.
Freeman and C. Keller, North-Holland, Amsterdam, 1985; I. Grenthe
and B. Lagerman, Acta Chem. Scand., 1991, 45, 122.
10 A. Cassol, P. Di Bernardo, R. Portanova, M. Tolazzi, G. Tomat and P.
Zanonato, Inorg. Chem., 1990, 29, 1079; A. Cassol, P. Di Bernardo, R.
Portanova, M. Tolazzi and P. L. Zanonato, J. Chem. Soc., Dalton Trans.,
1995, 733.
11 V. Rudiger and H. Schneider, Chem.-Eur. J., 2000, 6, 3771; H.
Schneider, F. Hacket and R. Volker, Chem. Rev., 1998, 98, 1755.
12 D. A. Beauchamp and S. J. Loeb, Chem.-Eur. J., 2002, 8, 5084; K.
Zamaraev, New J. Chem., 1994, 18, 3; L. A. Goinez, J. Lin, M. Munoz,
A. W. Coleman and A. Kaifer, J. Chem. Soc., Faraday Trans., 1996, 92,
645; B. Masci, M. Gabrielli, S. L. Mortera, M. Nierlich and P. Thuery,
Polyhedron, 2002, 21, 1125; P. H. Walton and K. N. Raymond, Inorg.
Chim. Acta, 1995, 240, 593; A. P. Zazhogin, A. A. Zazhogin and A. I.
Serafimovich, Khim. Fiz., 1997, 16, 11; A. R. Van Doorn, R. Schaafstra,
M. Bos, S. Harkema, J. Van Eerden, W. Verboom and D. N. Reinhoudt,
J. Org. Chem., 1991, 56, 6083.
Fig. 2 (Top) 1H NMR spectra of the ethylenediamine proton region and
trend in chemical shifts during titration. (Bottom) Data (3) and fit to a
1 : 1 isotherm (—) with Kassoc = 253 (22) M21
.
C h e m . C o m m u n . , 2 0 0 4 , 1 7 2 – 1 7 3
173