viii
A. Sacchetti et al./Chemical Papers
after 72 h. The most relevant observation was that
when using our hydrogel-supported catalysts, no TFA
addition was required. This is most probably due to
the presence of free carboxylic groups from PAA in
the hydrogel, which are able to provide the required
acidic environment. It was also observed that satis-
factory yields were achieved when using 1 mole % of
the loaded catalyst. This remarkable result is in agree-
ment with recent reports on low loading organocatal-
ysis even with water as the solvent (Park et al., 2015;
Giacalone et al., 2012).
multienzymatic cascade reduction of α,β-unsaturated alde-
hydes. The Journal of Organic Chemistry, 78, 4811–4822.
DOI: 10.1021/jo4003097.
Brenna, E., Gatti, F. G., Monti, D., Parmeggiani, F., Sacchetti,
A., & Valoti, J. (2015). Substrate-engineering approach to
the stereoselective chemo-multienzymatic cascade synthesis
of Nicotiana tabacum lactone. Journal of Molecular Cataly-
sis B: Enzymatic, 114, 77–85. DOI: 10.1016/j.molcatb.2014.
12.011.
Dalko, P. I., & Moisan, L. (2001). Enantioselective organocatal-
ysis. Angewandte Chemie International Edition, 40, 3726–
3748. DOI: 10.1002/1521-3773(20011015)40:20<3726::aid-
anie3726>3.0.co;2-d.
43, 5138–5175. DOI: 10.1002/anie.200400650.
Conclusions
Danelli, T., Annunziata, R., Benaglia, M., Cinquini, M., Cozzi,
F., & Tocco, G. (2003). Immobilization of catalysts derived
from Cinchona alkaloids on modified poly(ethylene glycol).
Tetrahedron: Asymmetry, 14, 461–467. DOI: 10.1016/s0957-
4166(02)00830-3.
Davoodnia, A., Allameh, S., Fazli, S., & Tavakoli-Hoseini, N.
(2011). One-pot synthesis of 2-amino-3-cyano-4-arylsubstitu-
ted tetrahydrobenzo[b]pyrans catalysed by silica gel-suppor-
ted polyphosphoric acid (PPA–SiO2) as an efficient and
reusable catalyst. Chemical Papers, 65, 714–720. DOI:
10.2478/s11696-011-0064-8.
In this work, the first application of a hydrogel as
the support for a chiral imidazolidinone based cata-
lyst for the reduction of activated olefins is described.
Results are promising for further applications of this
strategy; however, some improvement in the loading
of the catalyst and in the hydrogel mechanical stabil-
ity is still necessary. These issues are currently under
investigation in our laboratory.
Dondoni, A., & Massi, A. (2008). Asymmetric organocatalysis:
From infancy to adolescence. Angewandte Chemie Interna-
tional Edition, 47, 4638–4660. DOI: 10.1002/anie.200704684.
Ford, M. C., Bertram, J. P., Hynes, S. R., Michaud, M., Li,
Q., Young, M., Segal, S. S., Madri, J. A., & Lavik, E. B.
(2006). A macroporous hydrogel for the coculture of neural
progenitor and endothelial cells to form functional vascular
networks in vivo. Proceedings of the National Academy of
Sciences of the United States of America, 103, 2512–2517.
DOI: 10.1073/pnas.0506020102.
Giacalone, F., Gruttadauria, M., Agrigento, P., & Noto, R.
(2012). Low-loading asymmetric organocatalysis. Chemical
Society Reviews, 41, 2406–2447. DOI: 10.1039/c1cs15206h.
Hayashi, Y. (2006). In water or in the presence of water? Ange-
wandte Chemie International Edition, 45, 8103–8104. DOI:
10.1002/anie.200603378.
References
Annabi, N., Tamayol, A., Uquillas, J. A., Akbari, M., Bertas-
soni, L. E., Cha, C., Camci-Unal, G., Dokmeci, M. R., Pep-
pas, N. A., & Khademhosseini, A. (2014). 25th Anniversary
article: Rational design and applications of hydrogels in re-
generative medicine. Advanced Materials, 26, 85–124. DOI:
10.1002/adma.201303233.
Atodiresei, I., Vila, C., & Rueping, M. (2015). Asymmetric
organocatalysis in continuous flow: Opportunities for impact-
ing industrial catalysis. ACS Catalysis, 5, 1972–1985. DOI:
10.1021/acscatal.5b00002.
Blackmond, D. G., Armstrong, A., Coombe, V., & Wells, A.
myths. Angewandte Chemie International Edition, 46, 3798–
3800. DOI: 10.1002/anie.200604952.
Hiki, S., & Kataoka, K. (2007). A facile synthesis of azido-
terminated heterobifunctional poly(ethylene glycol)s for
“click” conjugation. Bioconjugate Chemistry, 18, 2191–2196.
DOI: 10.1021/bc700152j.
Itsuno, S., & Hassan, M. M. (2014). Polymer-immobilized
chiral catalysts. RSC Advances, 4, 52023–52043. DOI:
10.1039/c4ra09561h.
Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click chem-
istry: Diverse chemical function from a few good reactions.
Angewandte Chemie International Edition, 40, 2004–2021.
DOI: 10.1002/1521-3773(20010601)40:11<2004::aid-anie2004
>3.0.co;2-5.
Lelais, G., & MacMillan, D. W. C. (2006). Modern strategies in
organic catalysis: The advent and development of iminium
activation. Aldrichimica Acta, 39, 79–87.
MacMillan, D. W. C. (2008). The advent and development
of organocatalysis. Nature, 455, 304–308. DOI: 10.1038/na-
ture07367.
1262. DOI: 10.1039/b613014n.
Munirathinam, R., Huskens, J., & Verboom, W. (2015). Sup-
ported catalysis in continuous-flow microreactors. Advanced
Synthesis & Catalysis, 357, 1093–1123. DOI: 10.1002/adsc.
201401081.
Brenna, E., Gatti, F. G., Manfredi, A., Monti, D., & Parmeg-
giani, F. (2012a). Enoate reductase-mediated preparation of
methyl (S)-2-bromobutanoate, a useful key intermediate for
the synthesis of chiral active pharmaceutical ingredients. Or-
ganic Process Research & Development, 16, 262–268. DOI:
10.1021/op200086t.
Brenna, E., Gatti, F. G., Monti, D., Parmeggiani, F., & Sac-
chetti, A. (2012b). Cascade coupling of ene reductases with
alcohol dehydrogenases: Enantioselective reduction of prochi-
ral unsaturated aldehydes. ChemCatChem, 4, 653–659. DOI:
10.1002/cctc.201100418.
Brenna, E., Gatti, F. G., Monti, D., Parmeggiani, F., & Sac-
—
chetti, A. (2012c). Productivity enhancement of C C biore-
—
ductions by coupling the in situ substrate feeding product
removal technology with isolated enzymes. Chemical Com-
munications, 48, 79–81. DOI: 10.1039/c1cc16014a.
Brenna, E., Cosi, S. L., Ferrandi, E. E., Gatti, F. G., Monti, D.,
Parmeggiani, F., & Sacchetti, A. (2013a). Substrate scope
and synthetic applications of the enantioselective reduction
of α-alkyl-β-arylenones mediated by Old Yellow Enzymes.
Organic & Biomolecular Chemistry, 11, 2988–2996. DOI:
10.1039/c3ob40076j.
Brenna, E., Gatti, F. G., Malpezzi, L., Monti, D., Parmeg-
giani, F., & Sacchetti, A. (2013b). Synthesis of robalzotan,
ebalzotan, and rotigotine precursors via the stereoselective
Brought to you by | Weizmann Institute of Science
Authenticated
Download Date | 12/15/15 11:30 AM