Â
E.T.G. Cavalheiro et al. / Thermochimica Acta 370 (2001) 129±133
133
Table 3
TG mass losses, temperature range and DSC peaks related to the thermal decomposition processes of the ligands and metal complexes under air
Process
TG data
DSC peaks (8C)a
Temperature
range (8C)
Mass loss a or residue b (%)
TG
Calculated
Cis-isomers
c-Salcn (s) ! c-Salcn (l)
±
±
±
135 (endo)
c-Salcn (s) ! CRb
156±330
330±607
274±523
248±357
121±205
292±569
90.8 a
9.1 a
±
350, >600 (exo)
568 (exo)
CR burning
9.2
±
[Ni(c-Salcn)] ! NiO
[Cu(c-Salcn)] ! CuO
[Zn(c-Salcn)]ÁH2O ! [Zn(c-Salcn)] H2O
[Zn(c-Salcn)] ! ZnO
16.3 b
19.0 b
4.55 a
20.3 b
332, 339, 533 (exo)
286, 322, 338, >500 (exo)
203 (endo)
20.7
4.46
20.1
350, 533 (exo)
Trans-isomers
t-Salcn (s) ! t-Salcn (l)
t-Salcn (l) ! decomposition
[Ni(t-Salcn)] ! NiO Ni
[Cu(t-Salcn)] ! CuO
±
±
±
121 (endo)
147±282
295±533
247±533
147±201
327±650
1.10 b
17.43 b
21.3 b
4.24 a
21.6 b
0
350, 568 (exo)
±
20.7
4.46
20.5
315, 327, 559 (exo)
214 (endo)
[Zn(t-Salcn)]ÁH2O ! [Zn(t-Salcn)] H2O
[Zn(t-Salcn)] ! ZnO
503 (exo)
a Exo: exothermic process; endo: endothermic process.
b CR: carbonaceous residue.
[3] N. Chantarasiri, T. Tuntulani, P. Tongraung, R. Seangprasert-
kit-Magee, W. Wannatong, Eur. Poly. J. 36 (2000) 695.
[4] R. Pignatello, A. Panicol, P. Mazzone, M. Pinizzotto, A.
Garozzo, P. Furneri, Eur. J. Med. Chem. 29 (1994) 781.
[5] L. Guofa, S. Tongshun, Z. Yonghian, J. Mol. Struct. 412
(1997) 75.
found is:
Znꢀt-Salcn > Znꢀc-Salcn > Niꢀt-Salcn
> Niꢀc-Salcn > Cuꢀt-Salcn ꢁ Cuꢀc-Salcn
This fact should be related with the structure of the
ligand and suggests the cis as a more unstable isomer.
Although, trans-isomers started their decomposition
process at higher temperatures, the intermediate ther-
mal events associated to these compounds are more
intense and occurred at lower temperatures than those
observed for cis-isomers (see DSC data in Fig. 3).
[6] R.C. Felicio, E.T.G. Cavalheiro, E.R. Dockal, Polyhedron, in
press.
[7] R.C. Felicio, G.A. da Silva, L.F. Ceridorio, E.R. Dockal,
Synth. React. Inorg. Met.-Org. Chem. 29 (1999) 171.
Â
Â
[8] P. Gili, M.G. Martõn Reyes, P. Martõn Zarza, I.L.F. Machado,
M.F.C. Guedes da Silva, M.A.N.D.A. Lemos, A.J.L. Pom-
beiro, Inorg. Chim. Acta 244 (1996) 25.
[9] L.J. Bellamy, The Infrared Spectra of Complex Molecules,
3rd Edition, Chapman & Hall, London, 1975, p. 52.
Â
Â
[10] P. Gili, M.G. Martõn Reyes, P. Martõn Zarza, M.F.C. Guedes
da Silva, Y.-Y. Tong, A.J.L. Pombeiro, Inorg. Chim. Acta 255
(1997) 279.
Acknowledgements
[11] A. Vogt, S. Wolowiec, R.L. Prasad, A. Gupta, J. Skarzewski,
Polyhedron 17 (1998) 1231.
Author are indebted to Brazilian agencies FAPESP
and CNPq, for ®nancial support.
[12] Z. Cimerman, N. Galic, B. Bosner, Anal. Chim. Acta 343
(1997) 145.
È
[13] T. Hokelek, Z. Kilic, M. Isiklan, M. Toy, J. Mol. Struct. 523
References
(2000) 61.
[14] S.M. Abu-El-Wafa, R.M. Issa, C.A. McAuliffe, Inorg. Chim.
Acta 99 (1985) 103.
[1] Z. Cimernman, N. Galic, B. Bosner, Anal. Chim. Acta 343
(1997) 145.
Ï
[15] Z. Smeal, F. Brezina, Z. Sindelar, R. Klicka, Polyhedron 15
Â
[2] C.P. Raptopoulou, A.N. Papadopoulos, D.A. Malamatari, E.
Loannidis, G. Molsidis, A. Terzis, D.P. Kessissoglou, Inorg.
Chim. Acta 272 (1998) 283.
(1996) 1971.
[16] G.C. Percy, D.A. Thornton, J. Inorg. Nucl. Chem. 34 (1972)
3357.