Journal of The Electrochemical Society, 149 ͑9͒ A1157-A1163 ͑2002͒
Acknowledgment
A1163
of Mn3ϩ ions into Mn2ϩ and Mn4ϩ and then a migration of the
Mn2ϩ ions from the octahedral sites to the tetrahedral sites. If so, the
substitution of other cations can perturb such a disproportionation
and the cation migration.
This work was supported by the Welch Foundation grant F-1254
and Texas Advanced Technology Program grant 003658-0488-1999.
The University of Texas at Austin assisted in meeting the publication
costs of this article.
With an objective to correlate the structural stability to the elec-
trochemical properties, we have also investigated the electrode per-
formance of some of the compositions listed in Table II. The elec-
trochemical cycling data of samples 3 and 5 in Table II that show the
best structural stability are compared with those of monoclinic
LiMnO2 and orthorhombic LiMnO2 in Fig. 12. Both the monoclinic
and orthorhombic LiMnO2 show a clear development of the 3 V
plateau characteristic of the formation of spinel-like phases within
ten cycles ͑Fig. 12a and b͒. Both samples 3 and 5 do not show the
development of a clear 3 V plateau at least within the first ten cycles.
However, the cation-substituted samples also show capacity fading,
since the layered to spinel-like transformation is not fully elimi-
nated, as evidenced from the X-ray patterns and the change in the
c/a ratio.
References
1. C. Julien and G. A. Nazri, Solid State Batteries: Materials Design and Optimiza-
tion, Kluwer, Boston, MA ͑1994͒.
2. A. Manthiram and J. Kim, Recent Res. Dev. Electrochem., 2, 31 ͑1999͒.
3. K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, Mater. Res. Bull.,
15, 783 ͑1980͒.
4. L. A. de Picciotto, M. M. Thackeray, W. I. F. David, P. G. Bruce, and J. B.
Goodenough, Mater. Res. Bull., 19, 1497 ͑1984͒.
5. R. Kanno, T. Shirane, Y. Kawamoto, T. Takeda, M. Takano, M. Ohashi, and Y.
Yamaguchi, J. Electrochem. Soc., 143, 2435 ͑1996͒.
6. R. Armstrong and P. G. Bruce, Nature (London), 381, 499 ͑1996͒.
7. F. Capitaine, P. Gravereau, and C. Delmas, Solid State Ionics, 89, 197 ͑1996͒.
8. G. Vitins and K. West, J. Electrochem. Soc., 144, 2587 ͑1997͒.
9. P. G. Bruce, A. R. Armstrong, and R. L. Gitzendanner, J. Mater. Chem., 9, 193
͑1999͒.
Conclusions
10. R. J. Gummow, D. C. Liles, and M. M. Thackeray, Mater. Res. Bull., 28, 1249
͑1993͒.
11. G. Dutta, A. Manthiram, J. B. Goodenough, and J. E. Grenier, J. Solid State Chem.,
96, 123 ͑1992͒.
12. A. Hirano, R. Kanno, Y. Kawamoto, Y. Takeda, K. Yamamura, M. Takano, K.
Ohyama, M. Ohashi, and Y. Yamaguchi, Solid State Ionics, 78, 123 ͑1995͒.
13. I. Nakai and T. Nakagome, Electrochem. Solid-State Lett., 1, 259 ͑1998͒.
14. I. Nakai, K. Takahashi, Y. Shiraishi, T. Nakagome, and F. Nishikawa, J. Solid State
Chem., 140, 145 ͑1998͒.
15. R. V. Chebiam, F. Prado, and A. Manthiram, J. Electrochem. Soc., 148, A49 ͑2001͒.
16. J. Davidson, R. S. McMillan, and J. J. Murray, J. Power Sources, 54, 205 ͑1995͒.
17. J. Davidson, R. S. McMillan, H. Slegr, B. Luan, I. Kargina, J. J. Murray, and I. P.
Swainson, J. Power Sources, 81-82, 406 ͑1999͒.
Bulk samples of Li0.5MO2 ͓M ϭ Mn, Co, and Ni, Ni1ϪyCoy ,
Ni1ϪyMny , and Mn1Ϫy͑Cr,Al,Mg͒ ͔ have been synthesized by
y
chemically extracting lithium from the corresponding LiMO2 using
Na2S2O8 . The ease of transformation of the layered Li0.5MO2
phases to cubic spinel-like phases decrease in the order Li0.5MnO2
Ͼ
ϾLi0.5NiO2
Li0.5CoO2 , which could be explained on the basis of
crystal field stabilization energies. The ease of transformation is re-
lated directly to the ability of the transition metal ions to occupy the
tetrahedral sites, and ions with a large octahedral site stabilization
energy suppress such a transformation. Additionally, the presence of
foreign ions in the transition metal plane ͑mixed cations͒ is found to
be effective in suppressing the cation migration and the formation of
spinel-like phases, possibly by perturbing the cooperativity among
the ions. In the case of manganese oxides, the migration may also
involve a disproportionation of Mn3ϩ into Mn2ϩ and Mn4ϩ, and the
presence of other cations may suppress the disproportionation and
thereby the formation of spinel-like phases. The mixed cation strat-
egy may prove effective in designing structurally stable cathode
hosts for lithium-ion cells.
18. H. Wang, Y. I. Jang, and Y. M. Chiang, Electrochem. Solid-State Lett., 2, 490
͑1999͒.
19. C. Delmas and I. Saadoune, Solid State Ionics, 53, 370 ͑1992͒.
20. W. Li and J. C. Currie, J. Electrochem. Soc., 144, 2773 ͑1997͒.
21. G. Ceder and A. Vander Ven, Electrochim. Acta, 45, 131 ͑1999͒.
22. H. Wang, Y. Jang, B. Huang, D. R. Sadoway, and Y. M. Chiang, J. Electrochem.
Soc., 146, 473 ͑1999͒.
23. M. G. S. R. Thomas, W. I. F. David, and J. B. Goodenough, Mater. Res. Bull., 20,
1137 ͑1985͒.
24. J. C. Hunter, J. Solid State Chem., 39, 142 ͑1981͒.