W. Brockner et al. / Thermochimica Acta 456 (2007) 64–68
67
Table 3
Thermal decomposition reactions of nitryl/nitrosyl nitrato nickelates and their characteristics in N2 atmosphere (c.f. Fig. 4)
Reaction/step
T (K)a
ꢀm (%)b
Experimental
(Calculated)
1. NO2[Ni(NO3)3] = NO[Ni(NO3)3] + 0.5O2
2. NO[Ni(NO3)3] = Ni(NO3)2O0.5 + NO + 0.5N2O5
3. Ni(NO3)2O0.5 = Ni(NO3)2 + 0.25O2
4. Ni(NO3)2 = 0.5Ni2O3 + NO2 + 0.5N2O5
5. Ni2O3 decomposition via Ni3O4 in NiO
293
413
5.0
32.2
38.0
72.0
74.2
(5.50)
(34.40)
(37.15)
(71.55)
(74.31)
∼423
∼540
above 593
The thermal decomposition of Ni(NO3)2 in H2/N2 atmosphere beginning at 255 ◦C yields elemental nickel
a
Decomposition temperature.
In relation to the starting compound.
b
dawdlingly ending up with NiO. The labels Ni2O3 and Ni3O4
mental ones.
Such an approach will better harmonize with the thermal
decomposition of manganese(II)nitrate hydrates for example
[22,23] whereat MnO2 is obviously formed. Unfortunately,
the presented thermal decomposition measurements cannot
contribute to a solution of the decomposition mechanism by
methodical reasons.
formed. In the relevant composition range no distinct phases
could be characterised by X-ray diffraction.
Therefore, the reaction mechanism of the thermal decom-
position of Ni(NO3)2·2H2O to basic intermediates either by
hydrolysisofnitrateionorbyredoxreactionsisfinallyunproved.
For further decomposition at higher temperatures the used atmo-
sphere is important, whereas in N2 nickel oxides and in H2/N2
(10%H2) elemental nickel are formed. Anhydrous nickel nitrate,
Ni(NO3)2, can be obtained in substance by thermal decomposi-
tion of nitryl/nitrosyl nitrato nickelate (NO2/NO)[Ni(NO3)3].
At least some contradictory (and non-reproducible) results
and findings of the thermal Ni(NO3)2·6H2O decomposition
might be caused by hasty temperature rising respective for-
mation of a hydrate melt changing the system drastically by
incoupled side reactions and evaporation of volatile species.
3.3. Thermal decomposition of nitryl/nitrosyl nitrato
nickelate (NO2/NO)[Ni(NO3)3]
mal dehydration of the title compound under usual conditions
as outlined, it can be prepared by thermal decomposition of
nitryl/nitrosyl nitrato nickelates, NO2/NO [Ni(NO3)3], under
milder conditions (Fig. 4, Table 3). The thermal degradation of
the nitryl/nitrosyl nitrato nickelate is included here in order to
show that anhydrous Ni(NO3)2 can be obtained in substance and
thatithasaconsiderablethermalstability. Thissoobtainedanhy-
drous nickel dinitrate is characterised by its Raman spectrum
(see footnote 3).3 The Raman frequencies of the nickel(II)nitrate
are very similar to those of anhydrous cobalt(II)nitrate [20] and
they may also assigned in analogy based on the vibrations of the
nitrate unit.
References
[1] F. Paulik, J. Paulik, M. Arnold, Thermochim. Acta 121 (1987) 137.
[2] P.L. Llewellyn, V. Chevrot, J. Ragai, O. Cerclier, J. Estienne, F. Rouquerol,
Solid State Ionics 101–103 (1997) 1293.
[3] M.A.A. Elmasry, A. Gaber, E.M.H. Khater, J. Therm. Anal. 52 (1998) 489.
[4] M.J. Tiernan, E.A. Fesenko, P.A. Barnes, G.M.B. Parkes, M. Ronane,
Thermochim. Acta 379 (2001) 163.
[5] M. Longhi, L. Formaro, J. Mater. Chem. 11 (2001) 1228.
[6] J. Estelle, P. Salagre, Y. Cesteros, M. Serra, F. Medina, J.E. Sueiras, Solid
State Ionics 156 (2003) 233.
[7] M. Serra, P. Salagre, Y. Cesteros, F. Medina, J.E. Sueiras, Phys. Chem.
Chem. Phys. 6 (2004) 858.
[8] S.K. Ryu, W.K. Lee, S.J. Park, Carbon Sci. 5 (2004) 180.
[9] T. Nissinen, M. Leskela¨, M. Gasik, J. Lamminen, Thermochim. Acta 427
(2004) 155.
[10] L. Markov, K. Petrov, V. Petkov, Thermochim. Acta 106 (1986) 283.
[11] S.A.A. Mansour, Mater. Chem. Phys. 36 (1994) 317.
[12] A. Malecki, A. Malecka, R. Gajerski, B. Prochowska-Klisch, A. Pod-
gorecka, J. Therm. Anal. 34 (1988) 203.
[13] A. Malecki, R. Gajerski, S. Labus, B. Prochowska-Klisch, J. Therm. Anal.
39 (1993) 545.
[14] K.T. Wojciechowski, A. Malecki, Thermochim. Acta 331 (1999) 73.
[15] B.V. L’vov, A.V. Novichikhin, Spectrochim, Acta Part B 50 (1995) 1427.
[16] J.G. Jackson, R.W. Fonsa, J.A. Holcombe, Spectrochim. Acta Part B 50
(1995) 1449.
4. Conclusion
The thermal dehydration/degradation of Ca(NO3)2·4H2O
under quasi-isothermal conditions proceeds stepwise via dis-
tinct hydrates, anhydrous Ca(NO3)2 and finally CaO. This
decomposition course is typical for nitrate hydrates with
hard-oxidable mono- and divalent cations (but not for e.g.
Ga(NO3)3·8H2O [31] giving basic intermediates). Contrary
to the calcium and cobalt nitrate hydrates [20], the thermal
dehydration/decomposition of Ni(NO3)2·6H2O does not lead
to anhydrous Ni(NO3)2, instead basic intermediate products are
[17] A. Malecki, R. Gajerski, S. Labus, B. Prochowska-Klisch, K.T. Woj-
ciechowski, J. Therm. Anal. Calorim. 60 (2000) 17.
[18] G.A. Tikhomirov, K.O. Znamenkov, I.V. Morozov, E. Kemnitz, S.I. Troy-
anov, Z. Anorg. Allg. Chem. 628 (2002) 269.
[19] M.H. Brooker, D.E. Irish, G.E. Boyd, J. Chem. Phys. 53 (1970) 1083.
[20] C. Ehrhardt, M. Gjikaj, W. Brockner, Thermochim. Acta 432 (2005) 36.
3
Raman frequencies of anhydrous nickel(II)nitrate, Ni(NO3)2: –NO3 stretch-
ings 1451w-m, 1383w, 1354w, 1092sh, 1083vs, 1056w; –NO3 bendings 758w,
748w; lattice vibrations 208m, 185vw, 160m, 147m, 122sh, 86vw, with
s = strong, m = medium, w = weak, v = very, sh = shoulder.