X.H. Huang et al. / Electrochimica Acta 52 (2007) 4177–4181
4181
improvements can be attributed to the conductive carbon and its
combination with the pores. The carbon can reduce the specific
surface area of the original porous sphere, keep the particles in
the spheres electrically connected and thus improve the electro-
chemical performance of NiO.
References
[1] J.-M. Tarascon, M. Armand, Nature 414 (2001) 359.
[2] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature 407
(2000) 496.
[3] P. Poizot, S. Laruelle, S. Grugeon, J.-M. Tarascon, J. Electrochem. Soc.
149 (2002) A1212.
[4] K.T. Nam, D.-W. Kim, P.J. Yoo, C.-Y. Chiang, N. Meethong,
P.T. Hammond, Y.-M. Chiang, A.M. Belcher, Science 312 (2006)
885.
[5] W.Y. Li, L.N. Xu, J. Chen, Adv. Funct. Mater. 15 (2005) 851.
[6] D. Larcher, G. Sudant, J.-B. Leriche, Y. Chabre, J.-M. Tarascon, J. Elec-
trochem. Soc. 149 (2002) A234.
open potential of 2.0 V.
[7] Y.M. Kang, M.S. Song, J.H. Kim, H.S. Kim, M.S. Park, J.Y. Lee, H.K. Liu,
S.X. Dou, Electrochim. Acta 50 (2005) 3667.
[8] Y. Wang, Z.W. Fu, Q.Z. Qin, Thin Solid Films 441 (2003) 19.
[9] Y. Wang, Q.Z. Qin, J. Electrochem. Soc. 149 (2002) A873.
[10] E. Hosono, S. Fujihara, I. Honma, H. Zhou, Electrochem. Commun. 8
(2006) 284.
[11] S. Grugeon, S. Laruelle, R. Herrera-Urbina, L. Dupont, P. Poizot, J.-M.
Tarascon, J. Electrochem. Soc. 148 (2001) A285.
[12] A. De´bart, L. Dupont, P. Poizot, J.-B. Leriche, J.M. Tarascon, J. Elec-
trochem. Soc. 148 (2001) A1266.
approximate45◦ angletotherealaxiscorrespondstothelithium-
diffusion process within electrodes [22]. It is obviously shown
that the diameter of the semicircle in medium-frequency region
for the NiO-C electrode is smaller than that of NiO, indicating
lower charge-transfer impedances. This indicates that the addi-
tion of carbon had improved the electronic conductivity, and
thus significantly improved the cycling performance.
[13] J. Chen, L. Xu, W. Li, X. Gou, Adv. Mater. 17 (2005) 582.
[14] K.T. Lee, Y.S. Jung, S.M. Oh, J. Am. Chem. Soc. 125 (2003) 5652.
[15] M. Noh, Y. Kwon, H. Lee, J. Cho, Y. Kim, M.G. Kim, Chem. Mater. 17
(2005) 1926.
[16] J. Fan, T. Wang, C. Yu, B. Tu, Z. Jiang, D. Zhao, Adv. Mater. 16 (2004)
1432.
[17] Y. Wang, F. Su, J.Y. Lee, X.S. Zhao, Chem. Mater. 18 (2006) 1347.
[18] G.X. Wang, J.H. Ahn, J. Yao, S. Bewlay, H.K. Liu, Electrochem. Commun.
6 (2004) 689.
[19] Z.S. Wen, J. Yang, B.F. Wang, K. Wang, Y. Liu, Electrochem. Commun. 5
(2003) 165.
4. Conclusions
Spherical NiO-C composite was synthesized successfully
by dispersing porous NiO microspheres in glucose solution
and subsequent carbonization under hydrothermal conditions
at 180 ◦C. The carbon coated on the surface, and also filled in
the inner pores of the NiO sphere. The NiO-C composite exhib-
ited higher initial coulombic efficiency (66.6%) than the NiO
(56.4%) at a charging–discharging rate of 0.5 C. Better cycling
performance was also obtained for the NiO-C electrode. The
specific capacity after 40 cycles for the NiO-C composite is
430 mAh g−1, higher than that of NiO (200 mAh g−1). These
[20] L.J. Fu, H. Liu, H.P. Zhang, C. Li, T. Zhang, Y.P. Wu, R. Holze, H.Q. Wu,
Electrochem. Commun. 8 (2006) 1.
[21] X. Sun, Y. Li, Angew. Chem. Int. Ed. 43 (2004) 597.
[22] S. Yang, H. Song, X. Chen, Electrochem. Commun. 8 (2006) 137.