222105-3
You et al.
Appl. Phys. Lett. 89, 222105 ͑2006͒
FIG. 3. ͑Color online͒ Bode plots of
absolute impedance ͉Z͉ and capaci-
tance as a function of frequency: ͑a͒
thickness dependence ͑190 and
40 nm͒ and ͑b͒ bias dependence in
NiO thin films between 0 and 3 V.
͑Thickness of NiO thin film: 190 nm͒.
functions. Therefore, the impedance spectra reflect the con-
tributions of the bulk-related responses, but not from the in-
terfacial contributions between NiO and the Pt electrode.
Bode plots of absolute impedance and capacitance are shown
as a function of frequency in Fig. 3͑a͒ for two different thick-
nesses, 40 and 190 nm. The corresponding capacitances at
1 MHz were calculated to be 7.9ϫ10−11 and 4.4ϫ10−11 F.
Corrected for the geometric factors, the effective dielectric
constants for the 40 and 190 nm films were estimated to be
approximately 8.86 and 11.51, respectively. The dielectric
constant is quite close to the reported value of bulk NiO
materials, i.e., 15: the switching behavior cannot be ex-
plained in terms of the interfacial responses originating from
the Pt/NiO contacts, since the non-Ohmic effects lead to
much higher capacitance, e.g., in the range of nanofarads.
The impedance information obtained during the off state
was similar to that before forming. The two impedance spec-
tra show almost identical capacitance as a function of fre-
quency, indicating that both states have the same origin. The
impedance of Fig. 2͑b͒ suggests percolated interconnections
of the highly conducting components between the two elec-
trodes embedded into the pseudoinsulating NiO matrix. Dur-
ing the bias sweeping from 0 to 3 V, the impedance arc de-
creased in magnitude after a maximum at 1 V ͓see Fig. 3͑b͔͒.
The bias sweeping showed a gradual decrease in impedance
unlike the rapid changes in the current-voltage characteris-
tics. The low-frequency capacitance was independent of the
applied bias. In the retention test, impedance at 100 Hz con-
tinued to retain the initial values without any significant
changes up to 1000 s.
As shown in Fig. 1, the initial “electroforming” can gen-
erate highly defective components, such as vacancies, metal-
lic clusters, phase separation, dislocations, etc., in the insu-
lating NiO matrix, leading to the interconnected filaments
between electrodes. In the on state, the resistance increases
with the applied voltage, probably in combination with local
Joule heating. Since NiO thin films are highly sensitive to
applied voltage, more precisely to power as mentioned
above, the Joule heating at local domains drives the defective
states to the oxidized ones, isolated into NiO matrix. The
formation and rupture of a conducting filament were used to
into account the power dependence of resistive switching
systems in transition metal oxides,3 impedance spectroscopy
is preferred because the uncontrolled dc probing technique
involves unexpected prolonged power accumulation and can
unpredictably modify the electronic state in switching
devices.
In summary, the use of impedance spectroscopy allows
for the separation of the bulk responses from the interfacial
effects between the electrode and thin films. ac impedance
measurements for ALD NiO thin films indicated several
unique features: ͑i͒ low dielectric constant, ͑ii͒ bias-
independent capacitance, and ͑iii͒ the capability of imped-
ance to monitor data retention. The low dielectric constant
and bias-independent capacitance indicate that the switching
behavior in NiO thin films originates from the filament-
controlled NiO matrix.
1J. F. Gibbons and W. E. Beadle, Solid-State Electron. 7, 785 ͑1964͒.
2S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K.
Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H.
Park, Appl. Phys. Lett. 85, 5655 ͑2004͒.
3C. Rohde, B. J. Choi, D. S. Jeong, S. Choi, J.-S. Zhao, and C. S. Hwang,
Appl. Phys. Lett. 86, 262907 ͑2005͒.
4W. R. Hiatt and T. W. Hickmott, Appl. Phys. Lett. 6, 106 ͑1965͒.
5A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, Appl.
Phys. Lett. 77, 139 ͑2000͒.
6D. Choi, D. Lee, H. Sim, M. Chang, and H. Hwang, Appl. Phys. Lett. 88,
082904 ͑2006͒.
7C. Papagianni, Y. B. Nian, Y. Q. Wang, N. J. Wu, and A. Ignatiev, Non-
Volatile Memory Technology Symposium, 15–17 Nov. 2004, p. 125.
8J. G. Simmons and R. R. Verderber, Proc. R. Soc. London, Ser. A 301, 77
͑1976͒.
9T. W. Hickmott, J. Appl. Phys. 33, 2669 ͑1962͒.
10J. R. Contreras, H. Kohlstedt, U. Poppe, R. Waser, C. Buchal, and N. A.
Pertsev, Appl. Phys. Lett. 83, 4595 ͑2003͒.
11R. G. Sharpe and P. W. Palmer, J. Appl. Phys. 79, 8565 ͑1996͒.
12J. T. S. Irvine, D. C. Sinclair, and A. R. West, Adv. Mater. ͑Weinheim,
Ger.͒ 2, 132 ͑1990͒.
13J. Lee, J.-H. Hwang, J. J. Mashek, T. O. Mason, A. E. Miller, and R. W.
Siegel, J. Mater. Res. 10, 2295 ͑1995͒.
14H.-F. Cheng, J. Appl. Phys. 56, 1831 ͑1984͒.
15W. Cho, S. S. Lee, K.-S. An, T.-M. Chung, and C. G. Kim ͑unpublished͒.
16S. Seo, M. J. Lee, D. C. Kim, S. E. Ahn, B.-H Park, Y. S. Kim, I. K. Yoo,
I. S. Byun, I. R. Hwang, S. H. Kim, J.-S. Kim, J. S. Choi, J. H. Lee, S. H.
Jeon, S. H. Hong, and B. H. Park, Appl. Phys. Lett. 87, 263507 ͑2005͒.
17D. C. Kim, S. Seo, S. E. Ahn, D.-S. Suh, M. J. Lee, B.-H. Park, I. K. Yoo,
I. G. Baek, H.-J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, and U.
I. Chung, Appl. Phys. Lett. 88, 202102 ͑2006͒.
156.34.239.150 On: Sun, 13 Apr 2014 23:33:02