ACCEPTED MANUSCRIPT
100
95
90
85
80
75
70
1
2
3
4
5
6
7
8
9
10
Reuse
Figure 7 The reusability of catalysts for synthesis of pyridopyrimidinone.
Table 5 The loading amount of Pd (II).
Entry
1
2
Catalyst
KCC-1/Pd-NHC-Py
KCC-1/Pd-NHC-Py after ten reuses
wt %
4.9
4.7
Conclusions
In the present study KCC-1/Pd-NHC-Py NPs was synthesized and characterized as an environmentally-friendly nanocatalyst
for the synthesis of pyridopyrimidinones with various electronically diverse substrates. The experimental results displayed
the core-shell structure of the synthesized catalyst with a mean size range of 250-300 nm. In addition, the catalyst was easily
recoverable and reusable. Subsequently, high yields in short reaction times were achieved without the need for a
pyridopyrimidinone catalyst as well as excellent reusability for at least ten times in the corresponding reaction without a
reduction in catalytic activity.
Notes and references
1
2
3
4
5
6
7
J. J. Li, Heterocyclic chemistry in drug discovery, John Wiley & Sons, Hoboken, N.J., (2013).
S. Jeanmart, A. J. Edmunds, C. Lamberth and M. Pouliot, Bioorg. Med. Chem., 24 (2016) 317-341.
D. C. Chen, S. J. Su and Y. Cao, J Mater Chem C, 2 (2014) 9565-9578.
M. Liu, S. J. Su, M. C. Jung, Y. B. Qi, W. M. Zhao and J. Kido, Chem Mater, 24 (2012) 3817-3827.
M. Corena-McLeod, Drugs R D, 15 (2015) 163-174.
T. Gohda, C. Ra, C. Hamada, T. Tsuge, H. Kawachi and Y. Tomino, Arzneimittelforschung, 58 (2008) 18-23.
J. Ni, Q. S. Liu, S. Z. Xie, C. Carlson, T. Von, K. Vogel, S. Riddle, C. Benes, M. Eck, T. Roberts, N. Gray and J. Zhao, Cancer
Discov, 2 (2012) 425-433.
8
9
U. R. Mane, D. Mohanakrishnan, D. Sahal, P. R. Murumkar, R. Giridhar and M. R. Yadav, Eur. J. Med. Chem., 79 (2014) 422-
435.
U. R. Mane, H. Li, J. Huang, R. C. Gupta, S. S. Nadkarni, R. Giridhar, P. P. Naik and M. R. Yadav, Bioorg. Med. Chem., 20
(2012) 6296-6304.
10 L. Silpa, A. Niepceron, F. Laurent, F. Brossier, M. Penichon, C. Enguehard-Gueiffier, M. Abarbri, A. Silvestre and J. Petrignet,
Bioorg. Med. Chem. Lett., 26 (2016) 114-120.
11 C. La Motta, S. Sartini, L. Mugnaini, F. Simorini, S. Taliani, S. Salerno, A. M. Marini, F. Da Settimo, A. Lavecchia, E.
Novellino, M. Cantore, P. Failli and M. Ciuffi, J Med Chem, 50 (2007) 4917-4927.
12 L. Peng, X. Gao, L. Duan, X. Ren, D. Wu and K. Ding, J Med Chem, 54 (2011) 7729-7733.
13 L. L. Blazer, D. L. Roman, A. Chung, M. J. Larsen, B. M. Greedy, S. M. Husbands and R. R. Neubig, Mol. Pharmacol., 78
(2010) 524-533.
14 G. Le, N. Vandegraaff, D. I. Rhodes, E. D. Jones, J. A. Coates, L. Lu, X. Li, C. Yu, X. Feng and J. J. Deadman, Bioorg. Med.
Chem. Lett., 20 (2010) 5013-5018.
15 M. Askoura, W. Mottawea, T. Abujamel and I. Taher, Libyan J Med, (2011) 6.
16 S. Rapolu, M. Alla, R. J. Ganji, V. Saddanapu, C. Kishor, V. R. Bommena and A. Addlagatta, Med. Chem. Comm., 4 (2013)
817-821.
17 G. Yu, G. Zhou, M. Zhu, W. Wang, T. Zhu, Q. Gu and D. Li, Org. Lett., 18 (2016) 244-247.
18 J. F. Rebhun, S. J. Roloff, R. A. Velliquette and S. R. Missler, Fitoterapia, 101 (2015) 57-63.
19 G. Huang, D. Roos, P. Stadtmüller and M. Decker, Tetrahedron Lett, 55 (2014) 3607-3609.
20 A. Schramm and M. Hamburger, Fitoterapia, 94 (2014) 127-133.
21 F. Rajabi, W. R. Thiel Adv, Synth. Catal. 356 (2014) 1873 – 1877.
22 C. Zhang, J. Liu, C. Xia, Org. Biomol. Chem. 12 (2014) 9702.
23 A. Chartoire, A. Boreux, A. R. Martin, S. P. Nolan, RSC Advances 3 (2013) 3840.
24 T. Wang, H. Xie, L. Liu, W.X. Zhao, Journal of Organometallic Chemistry 804 (2016) 73-79.
25 K. Natte, J. Chen, H. Neumann, M. Beller, X. Wu, Org. Biomol. Chem., 12 (2014) 5590.
26 A. Chartoire, X. Frogneux, S. P. Nolan, Adv. Synth. Catal. 354 (2012) 1897–1901.
10