Copper-catalyzed Sonogashira cross-coupling reactions
[15] B. Zhang, J. Song, H. Liu, J. Shi, J. Ma, H. Fan, W. Wang, P. Zhang, B. Han,
Green Chem. 2014, 16, 1198–1201.
Conclusions
[16] G.-J. Cheng, Y.-F. Yang, P. Liu, P. Chen, T.-Y. Sun, G. Li, X. Zhang, K. Houk,
J.-Q. Yu, Y.-D. Wu, J. Am. Chem. Soc. 2014, 136, 894–897.
[17] K. Micskei, T. Patonay, L. Caglioti, G. Palyi, Chem. Biodiv. 2010, 7,
1660–1669.
[18] Q. Cai, H. Zhang, B. Zou, X. Xie, W. Zhu, G. He, J. Wang, X. Pan, Y. Chen,
Q. Yuan, Pure Appl. Chem. 2009, 81, 227–234.
[19] D. Ma, Q. Cai, Acc. Chem. Res. 2008, 41, 1450–1460.
[20] D. Ma, Q. Geng, H. Zhang, Y. Jiang, Angew. Chem. Int. Ed. 2010, 49,
1291–1294.
[21] D. Ma, Q. Cai, H. Zhang, Org. Lett. 2003, 5, 2453–2455.
[22] H. Zhang, Q. Cai, D. Ma, J. Org. Chem. 2005, 70, 5164–5173.
[23] D. Ma, Q. Cai, Synlett 2004, 128–130.
[24] X. Pan, Q. Cai, D. Ma, Org. Lett. 2004, 6, 1809–1812.
[25] W. Zhu, D. Ma, Chem. Commun. 2004, 888–889.
[26] D. Ma, Q. Cai, Org. Lett. 2003, 5, 3799–3802.
[27] Q. Cai, G. He, D. Ma, J. Org. Chem. 2006, 71, 5268–5273.
[28] H. Ghasemi, L. M. Antunes, M. G. Organ, Org. Lett. 2004, 6, 2913–
2916.
We have demonstrated that amino acid ligands are able to pro-
mote copper-catalyzed Sonogashira C–C bond formation reactions.
The key was the choice of a suitable amino acid as the ligand. Using
the palladium-free catalytic system CuI/amino acid, a variety of
substituted aromatic alkynes were prepared in good to excellent
yields. In most cases, a catalytic amount of L-methionine was effec-
tive as the promoter for the coupling reactions. The contamination
of product with ligands is always one of the most important prob-
lems of homogeneous catalysis. It is worth mentioning that this
promoter is inexpensive and readily available. In addition, it is solu-
ble in water and can be removed from the crude products by
simply washing with water.
Experimental
[29] T. M. Hansen, M. M. Engler, C. J. Forsyth, Bioorg. Med. Chem. Lett. 2003,
13, 2127–2130.
General procedure for sonogashira cross-coupling
[30] K. Hiroya, S. Matsumoto, T. Sakamoto, Org. Lett. 2004, 6, 2953–2956.
[31] R. Chinchilla, C. Nájera, Chem. Rev. 2007, 107, 874–922.
[32] H. Plenio, Angew. Chem. Int. Ed. 2008, 47, 6954–6956.
[33] N. K. Garg, C. C. Woodroofe, C. J. Lacenere, S. R. Quake, B. M. Stoltz,
Chem. Commun. 2005, 4551–4553.
[34] C. C. 1, Z. X. Xie, Y. D. Zhang, J. H. Chen, Z. Yang, J. Org. Chem. 2003, 68,
8500–8504.
[35] G. Hennrich, A. M. Echavarren, Tetrahedron Lett. 2004, 45, 1147–1149.
[36] K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975, 16,
4467–4470.
[37] K. Sonogashira, J. Organometal. Chem. 2002, 653, 46–49.
[38] P. Li, L. Wang, L. Zhang, G. W. Wang, Adv. Synth. Catal. 2012, 354,
1307–1318.
[39] M. Nasrollahzadeh, M. Maham, M. M. Tohidi, J. Mol. Catal. A 2014, 391,
83–87.
[40] R. Chinchilla, C. Nájera, Chem. Soc. Rev. 2011, 40, 5084–5121.
[41] T. Hatakeyama, Y. Okada, Y. Yoshimoto, M. Nakamura, Angew. Chem.
2011, 123, 11165–11168.
[42] M. Carril, A. Correa, C. Bolm, Angew. Chem. 2008, 120, 4940–4943.
[43] W. Shi, C. Liu, A. Lei, Chem. Soc. Rev. 2011, 40, 2761–2776.
[44] A. A. Jalil, N. Kurono, M. Tokuda, Tetrahedron 2002, 58, 7477–7484.
[45] M. B. Thathagar, J. Beckers, G. Rothenberg, Green Chem. 2004, 6,
215–218.
Aryl halide (0.5 mmol), K3PO4 (1 mmol), methionine (8 mol%,
0.006 g for Ar–I; 15 mol%, 0.011 g for Ar–Br), CuI (10 mol%, 0.01 g)
and phenylacetylene (0.52 mmol) in DMSO or DMF were intro-
duced into a round-bottom flask equipped with a stirring bar and
a reflux condenser under a nitrogen atmosphere. The mixture was
stirred at 135–140°C and the reaction progress was monitored
using TLC and GC. After the reaction was complete, or when the
progress of the reaction had stopped, the cooled resulting mixture
was diluted by adding EtOAc–H2O. The organic layer was sepa-
rated, and the aqueous layer was extracted with EtOAc. The com-
bined organic layers were dried over anhydrous CaCl2, filtered
and concentrated to give the corresponding product, which could
be purified using column chromatography (hexane–EtOAc). The
arylalkyne products were known compounds[52,65,66] and were
1
characterized using Fourier transform infrared, H NMR and 13C
NMR spectroscopies.
Acknowledgments
[46] L. Feng, F. Liu, P. Sun, J. Bao, Synlett 2008, 1415–1417.
[47] O. Vechorkin, D. Barmaz, V. Proust, X. Hu, J. Am. Chem. Soc. 2009, 131,
12078–12079.
[48] P. Li, L. Wang, Y. Zhang, M. Wang, Tetrahedron Lett. 2008, 49,
6650–6654.
We gratefully acknowledge the funding support received for this
project from the Isfahan University of Technology (IUT), IR Iran,
and Isfahan Science and Technology Town (ISTT), IR Iran. Further fi-
nancial support from the Center of Excellence in Sensor and Green
Chemistry Research (IUT) is gratefully acknowledged.
[49] S. E. Allen, R. R. Walvoord, R. Padilla-Salinas, M. C. Kozlowski, Chem. Rev.
2013, 113, 6234–6458.
[50] L. H. Zou, A. J. Johansson, E. Zuidema, C. Bolm, Chem. Eur. J. 2013, 19,
8144–8152.
[51] J.-H. Li, J.-L. Li, D.-P. Wang, S.-F. Pi, Y.-X. Xie, M.-B. Zhang, X.-C. Hu, J. Org.
References
Chem. 2007, 72, 2053–2057.
[52] F. Monnier, F. Turtaut, L. Duroure, M. Taillefer, Org. Lett. 2008, 10,
3203–3206.
[53] D. Ma, F. Liu, Chem. Commun. 2004, 1934–1935.
[54] W. Xu, B. Yu, H. Sun, G. Zhang, W. Zhang, Z. Gao, Appl. Organometal.
Chem. 2015, 29, 353–356.
[55] W. Xu, B. Yu, H. Sun, G. Zhang, W. Zhang, Z. Gao, Appl. Organometal.
Chem. 2015, 29, 301–304.
[56] A. R. Hajipour, E. Boostani, F. Mohammadsaleh, RSC Adv. 2015, 5,
24742–24748.
[57] A. R. Hajipour, F. Mohammadsaleh, Tetrahedron Lett. 2014, 55,
6799–6802.
[58] A. R. Hajipour, F. Mohammadsaleh, Tetrahedron Lett. 2014, 55,
3459–3462.
[59] A. R. Hajipour, S. H. Nazemzadeh, F. Mohammadsaleh, Tetrahedron Lett.
2014, 55, 654–656.
[1] I. Wagner, H. Musso, Angew. Chem. Int. Ed. Engl. 1983, 22, 816–828.
[2] P. Trumbo, S. Schlicker, A. Yates, M. Poos, J. Am. Diet. Assoc. 2002, 102,
1621–1630.
[3] G. Wu, Amino Acids 2013, 45, 407–411.
[4] F. Chen, T. Wang, N. Jiao, Chem. Rev. 2014, 114, 8613–8661.
[5] S. L. Zultanski, G. C. Fu, J. Am. Chem. Soc. 2013, 135, 624–627.
[6] K. Huang, C.-L. Sun, Z.-J. Shi, Chem. Soc. Rev. 2011, 40, 2435–2452.
[7] A. Wilsily, F. Tramutola, N. A. Owston, G. C. Fu, J. Am. Chem. Soc. 2012,
134, 5794–5797.
[8] C. Zhao, M. R. Crimmin, F. D. Toste, R. G. Bergman, Acc. Chem. Res. 2013,
47, 517–529.
[9] A. Shafir, S. L. Buchwald, J. Am. Chem. Soc. 2006, 128, 8742–8743.
[10] J. Andersen, U. Madsen, F. Björkling, X. Liang, Synlett 2005, 2209–2213.
[11] Y. F. Wang, W. Deng, L. Liu, Q. X. Guo, Chin. Chem. Lett. 2005, 16,
1197–1200.
[60] L. Fomina, B. Vazquez, E. Tkatchouk, S. Fomine, Tetrahedron 2002, 58,
6741–6747.
[61] K. Okuro, M. Furuune, M. Enna, M. Miura, M. Nomura, J. Org. Chem.
1993, 58, 4716–4721.
[12] F. Y. Kwong, A. Klapars, S. L. Buchwald, Org. Lett. 2002, 4, 581–584.
[13] R. K. Gujadhur, C. G. Bates, D. Venkataraman, Org. Lett. 2001, 3,
4315–4317.
[14] A. R. Hajipour, G. Azizi, Green Chem. 2013, 15, 1030–1034.
Appl. Organometal. Chem. 2015, 29, 787–792
Copyright © 2015 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc