MedChemComm
Research Article
Acknowledgements
11 S. I. Pascu, P. A. Waghorn, T. D. Conry, B. Lin, H. M. Betts,
J. R. Dilworth, R. B. Sim, G. C. Churchill, F. I. Aigbirhio and
J. E. Warren, Cellular confocal fluorescence studies and
cytotoxic activity of new Zn(II) bisIJthiosemicarbazonato)
complexes, Dalton Trans., 2008, 2107–2110.
12 C. R. Kowol, R. Trondl, V. B. Arion, M. A. Jakupec, I.
Lichtscheidl and B. K. Keppler, Fluorescence properties and
cellular distribution of the investigational anticancer drug
triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone)
and its zinc(II) complex, Dalton Trans., 2010, 39, 704–706.
13 A. E. Stacy, D. Palanimuthu, P. V. Bernhardt, D. S.
Kalinowski, P. J. Jansson and D. R. Richardson, ZincIJII)-
Thiosemicarbazone Complexes Are Localized to the
Lysosomal Compartment Where They Transmetallate with
Copper Ions to Induce Cytotoxicity, J. Med. Chem., 2016, 59,
4965–4984.
This work was supported by the National Natural Science
Foundation of China (Project No. 81430085 and No. 21372206
for H.-M. L. and No. 81703328 for L.-Y. M.); the National Key
Research Program of Proteins (No. 2016YFA0501800); the Key
Research Program of Henan Province (No. 1611003110100 for
H.-M. L.).
Notes and references
1 Y. Yu, J. Wong, D. B. Lovejoy, D. S. Kalinowski and D. R.
Richardson,
Chelators
at
the
cancer
coalface:
desferrioxamine to Triapine and beyond, Clin. Cancer Res.,
2006, 12, 6876–6883.
2 J. L. Buss, F. M. Torti and S. V. Torti, The role of iron
chelation in cancer therapy, Curr. Med. Chem., 2003, 10,
1021–1034.
3 T. B. Chaston, D. B. Lovejoy, R. N. Watts and D. R.
Richardson, Examination of the antiproliferative activity of
iron chelators: multiple cellular targets and the different
mechanism of action of triapine compared with
desferrioxamine and the potent pyridoxal isonicotinoyl
hydrazone analogue 311, Clin. Cancer Res., 2003, 9,
402–414.
14 Y. Yu, D. S. Kalinowski, Z. Kovacevic, A. R. Siafakas, P. J.
Jansson, C. Stefani, D. B. Lovejoy, P. C. Sharpe, P. V.
Bernhardt and D. R. Richardson, Thiosemicarbazones from
the old to new: iron chelators that are more than just
ribonucleotide reductase inhibitors, J. Med. Chem., 2009, 52,
5271–5294.
15 R. A. Finch, M. Liu, S. P. Grill, W. C. Rose, R. Loomis, K. M.
Vasquez, Y. Cheng and A. C. Sartorelli, Triapine
(3-aminopyridine-2-carboxaldehyde-thiosemicarbazone):
A
4 Z. Kovacevic, D. S. Kalinowski, D. B. Lovejoy, Y. Yu, Y. Suryo
Rahmanto, P. C. Sharpe, P. V. Bernhardt and D. R.
Richardson, The medicinal chemistry of novel iron chelators
for the treatment of cancer, Curr. Top. Med. Chem., 2011, 11,
483–499.
5 Y. Yu, E. Gutierrez, Z. Kovacevic, F. Saletta, P. Obeidy, Y.
Suryo Rahmanto and D. R. Richardson, Iron chelators for
the treatment of cancer, Curr. Med. Chem., 2012, 19,
2689–2702.
6 F. Tisato, C. Marzano, M. Porchia, M. Pellei and C. Santini,
Copper in diseases and treatments, and copper-based anti-
cancer strategies, Med. Res. Rev., 2010, 30, 708–749.
7 D. B. Lovejoy, P. J. Jansson, U. T. Brunk, J. Wong, P. Ponka
and D. R. Richardson, Antitumor activity of metal-chelating
compound Dp44mT is mediated by formation of a redox-
active copper complex that accumulates in lysosomes, Can-
cer Res., 2011, 71, 5871–5880.
potent inhibitor of ribonucleotide reductase activity with
broad spectrum antitumor activity, Biochem. Pharmacol.,
2000, 59, 983–991.
16 J. Yuan, D. B. Lovejoy and D. R. Richardson, Novel di-2-
pyridyl-derived iron chelators with marked and selective
antitumor activity: in vitro and in vivo assessment, Blood,
2004, 104, 1450–1458.
17 D. R. Richardson, P. C. Sharpe, D. B. Lovejoy, D. Senaratne,
D. S. Kalinowski, M. Islam and P. V. Bernhardt, Dipyridyl
thiosemicarbazone chelators with potent and selective
antitumor activity form iron complexes with redox activity,
J. Med. Chem., 2006, 49, 6510–6521.
18 C. R. Kowol, R. Berger, R. Eichinger, A. Roller, M. A.
Jakupec, P. P. Schmidt, V. B. Arion and B. K. Keppler,
GalliumIJIII) and iron(III) complexes of alpha-N-heterocyclic
thiosemicarbazones: synthesis, characterization, cytotoxicity,
and interaction with ribonucleotide reductase, J. Med.
Chem., 2007, 50, 1254–1265.
19 C. R. Kowol, R. Eichinger, M. A. Jakupec, M. Galanski, V. B.
Arion and B. K. Keppler, Effect of metal ion complexation
and chalcogen donor identity on the antiproliferative activity
of 2-acetylpyridine N,N-dimethylIJchalcogen)semicarbazones,
J. Inorg. Biochem., 2007, 101, 1946–1957.
8 B. M. Zeglis, V. Divilov and J. S. Lewis, Role of metalation in
the topoisomerase II alpha inhibition and antiproliferation
activity of
a series of alpha-heterocyclic-N4-substituted
thiosemicarbazones and their Cu(II) complexes, J. Med.
Chem., 2011, 54, 2391–2398.
9 D. Palanimuthu, S. V. Shinde, K. Somasundaram and A. G.
Samuelson, In vitro and in vivo anticancer activity of copper
bisIJthiosemicarbazone) complexes, J. Med. Chem., 2013, 56,
722–734.
10 A. R. Cowley, J. Davis, J. R. Dilworth, P. S. Donnelly, R.
Dobson, A. Nightingale, J. M. Peach, B. Shore, D. Kerr and L.
Seymour, Fluorescence studies of the intra-cellular distribu-
tion of zinc bisIJthiosemicarbazone) complexes in human
cancer cells, Chem. Commun., 2005, 845–847.
20 D. R. Richardson, D. S. Kalinowski, V. Richardson, P. C.
Sharpe, D. B. Lovejoy, M. Islam and P. V. Bernhardt,
2-Acetylpyridine thiosemicarbazones are potent iron
chelators and antiproliferative agents: redox activity, iron
complexation and characterization of their antitumor
activity, J. Med. Chem., 2009, 52, 1459–1470.
21 D. B. Lovejoy, D. M. Sharp, N. Seebacher, P. Obeidy, T.
Prichard, C. Stefani, M. T. Basha, P. C. Sharpe, P. J. Jansson,
This journal is © The Royal Society of Chemistry 2017
Med. Chem. Commun.