312
Transition Met Chem (2010) 35:305–313
Melting points were recorded on a melting point appa-
1
ratus. H NMR spectra were recorded at 300 or 250 MHz,
Sonogashira coupling reactions of aryl halides with phen-
ylacetylene has been developed. Compared with previous
reports, several interesting features are apparent on the
basis of the present results. Thus, the catalyst is recyclable
and also able to activate chlorobenzene with a high yield.
Furthermore, water is employed as a solvent, and the
reaction is free of phosphine. Further efforts to extend the
applications of the system to other coupling transforma-
tions are under way in our laboratory. There are only a few
catalysts that can catalyze C–C coupling reactions in truly
heterogeneous catalytic conditions [82, 83]. Aryl chlorides
normally remain inactive toward this type of catalyst,
especially in heterogeneous conditions. Because the reac-
tion medium is heterogeneous, our catalyst might be useful
for industrial applications.
using a Bruker DPX-300 and Bruker AC 250 MHz spec-
trometer in CDCl3 with TMS as internal standard, respec-
tively. Chemical shifts were given as d values with
reference to tetramethylsilane (TMS) internal standard. The
reaction products were quantified (GC data) using a Varian
3400 gas chromatograph equipped with a 30 m CP-
SIL8CB capillary column and a flame ionization detector
and identified by Trace DSQ II GC–MS equipped with a
60 m TR-50MS capillary column. Standardization of the
products was done by calibration using decane as an
internal standard. Melting point and 1H and 13C NMR data
of the five products are given below.
Diphenylacetylene (5a). mp 59 °C (lit. 60–62 °C [77]).
1H NMR (CDCl3, 250 MHz) d: 7.54–7.50 (m, 4H),
7.32–7.28 (m, 6H); 13C NMR (CDCl3, 62.5 MHz) d: 131.6,
128.3, 128.2, 123.3, 89.4; MS m/z (relative intensity, %):
178 (MC, 100), 152 (14), 126 (7), 89 (13).
Acknowledgments The authors acknowledge the Indian Associa-
tion for the Cultivation of Science for providing the instrumental
support. We also wish to thank Department of Science and Tech-
nology (DST), Council of Scientific and Industrial Research (CSIR)
and University Grant Commission (UGC), New Delhi, India for
funding.
(4-Nitrophenyl)phenylacetylene (5b). mp 118 °C (lit.
1
120–121 °C [78]). H NMR (CDCl3, 250 MHz) d: 8.19
(d,JZ8.83 Hz, 2H), 7.64 (d, JZ8.73 Hz, 2H), 7.56–7.52 (m,
2H), 7.39–7.37 (m, 3H); 13C NMR (CDCl3, 62.5 MHz)
d:146.9, 132.2, 131.8, 130.2, 129.2, 128.5, 123.6, 122.0,
94.7,87.5; MS m/z (relative intensity, %): 223 (MC, 100),
193(40), 176 (80), 165 (33), 151 (40), 139 (8), 126 (14).
(4-Methoxyphenyl)phenylacetylene (5c). mp 55 °C (lit.
57–61 °C [79]).1H NMR (CDCl3, 300 MHz) d: 7.53–
7.46(m, 4H), 7.37–7.30 (m, 3H), 6.87 (dd, JZ8.70, 2.10 Hz,
2H), 3.82 (s, 3H); 13C NMR (CDCl3, 75 MHz) d:
159.5,133.0, 131.4, 128.3, 127.9, 123.5, 115.3, 113.9, 89.3,
88.0,55.3; MS m/z (relative intensity, %): 208 (MC, 100),
193(48), 165 (39), 139 (8).
References
1. Sonogashira K, Tohda Y, Hagihara N (1975) Tetrahedron Lett
16:4467
2. Erdelyi M, Gogoll A (2001) J Org Chem 66:4165
3. Sonogashira KJ (2002) Organomet Chem 46:653
4. Negishi E, Anastasia L (2003) Chem Rev 103:1979
5. Nicolaou KC, Bulger PG, Sarlah D (2005) Angew Chem Int Ed
44:4442
6. Dakin LA, Langille NF, Panek JS (2002) J Org Chem 67:6812
7. Lopez-Deber MP, Castedo L, Granja JR (2001) Org Lett 3:2823
8. Paterson I, Davies RDM, Marquez R (2001) Angew Chem Int Ed
40:603
Phenyl-p-tolyacetylene (5d). mp 71–72.5 °C (lit. 72–
73 °C [80]). 1H NMR (CDCl3, 250 MHz) d: 7.52–7.48
(m, 2H),7.41 (d, J = 7.80 Hz, 2H), 7.29–7.26 (m, 3H),
7.10 (d, J = 7.81 Hz, 2H), 2.30 (s, 3H); 13C NMR (CDCl3,
62.5 MHz) d: 138.3, 131.5, 129.0, 128.2, 128.0, 123.4,
120.2, 89.6, 88.7, 21.4; MS m/z (relative intensity, %): 192
(MC, 100), 165(15), 139 (4), 115 (6), 94 (10).
´
9. Novak Z, Timari G, Kotschy A (2003) Tetrahedron 59:7509
10. Hayashi T, Kawakami T, Kumazawa H, Kotschy A (2003) Chem
Abstr 140:42196
11. Nova0k Z, Kotschy A (2003) Org Lett 5:3495
12. Sonoda M, Inaba A, Itahashi K, Tobe Y (2001) Org Lett 3:2419
13. Wong KT, Hsu CC (2001) Org Lett 3:173
14. Mongin O, Porres L, Moreaux L, Mertz J, Blanchard-Desce M
(2002) Org Lett 4:719
2-(2-Phenylethynyl)pyridine (5e). Oil [81]. 1H NMR
(CDCl3, 300 MHz) d: 8.60 (dd, J = 5.10, 0.90 Hz, 1H),7.68–
7.59(m, 3H), 7.51(dd, J = 8.10, 0.90 Hz, 1H), 7.37–7.33 (m,
3H), 7.23–7.19 (m, 1H); 13C NMR (CDCl3, 75 MHz) d:
149.9, 143.2, 136.0, 131.9, 128.8, 128.2, 127.0,122.6, 122.0,
89.1, 88.4; MS m/z (relative intensity, %): 179(MC, 100), 180
(17), 178 (40), 151 (13), 126 (8), 76 (9).
15. Yu CJ, Chong Y, Kayyem JF, Gozin M (1999) J Org Chem
64:2070
16. Huang S, Tour JM (1999) Tetrahedron Lett 40:3347
17. Tykwinski RR (2003) Angew Chem Int Ed 42:1566
18. Cheng LT, Tam W, Marder SR, Stiegman AE, Rikken G,
Spangler CW (1991) J Phys Chem 95:10643
19. Moroni M, Le Moigne J, Luzzati S (1994) Macromolecules
27:562
20. Bumm LA, Arnold JJ, Cygan MT, Dunbar TD, Burgin TP, Jones
L, Allara DL, Tour JM, Weiss PS (1996) Science 271:1705
21. Schumm JS, Pearson DL, Tsur JM (1994) Angew Chem Int Ed
33:1360
Conclusion
22. Choudhary D, Paul S, Gupta R, Clark JH (2006) Green Chem
8:479
In summary, an inexpensive and highly efficient hetero-
geneous palladium(II) Schiff base catalyst for the
23. Islam SM, Palit BK, Mukherjee DK, Saha CR (1997) J Mol Catal
A 124:5
123