90
A.C. Mafud et al. / Journal of Molecular Structure 988 (2011) 87–90
1226.2(2) Å3, D 1.84 Mg mÀ3, Z = 4, non-centrosymmetric. The sys-
tematic absences analysis indicated the presence of a rotation axis,
order 2, and a glide in direction, with a primitive cell: space group
P21/c. The perspective view [22] of the Trans-1,2-dibromo-2-sty-
ril-pyridine is shown in Fig. 1.
The 2973 reflections were held and the agreement between the
real and the obtained model was evaluated by the disagreement
factors R(F) and Rw(F2), which were 5.6% and 17.1% respectively,
and S 1.030. Selected bond distances and angles are given in Tables
1. Crystal data and structure refinaments are shown in Table 2.
The crystalline packing presents two types of intermolecular
5. Conclusions
The trans-1,2-dibromo-2-styrylpyridine molecular structure
shows the phenyl and the pyridinyl rings attached to the double
bond and located trans to the pyridine ring. The bromines present
in the molecule are in trans position, the torsion angle
Br1AC6@C7ABr2 is 178.8(4)° and the distances of halogens in rela-
tion to the best minimum square plane through the molecule is
2.05(1) and 1.82(1) Å to Br1 and Br2, respectively.
References
interactions is shown in Fig. 2. The first one is
p
Â
p interactions,
[1] H.S. Davis, J. Am. Chem. Soc. 50 (1928) 2769–2780.
[2] W.M. Horspool, Synthetic Organic Photochemistry, Plenum Press, New York,
1984.
[3] J.C. Coyle, Photochemistry in Organic Synthesis, The Royal Society of
Chemistry, 1986, pp. 163–188.
[4] A.G. Griesbeck, J. Mattay, Synthetic Organic Photochemistry, Marcel Dekker,
New York, 2005. pp. 141–160.
[5] M.I. Bruce, Angew. Chem. Int. Ed. Engl. 16 (1977) 73.
[6] M.L. Zanini, M.R. Meneguetti, G. Ebeling, P.R. Livotto, F. Rominger, J. Dupont,
Polyhedron 22 (2003) 1665.
[7] J. Dupont, N. Basso, M. Meneghetti, R.A. Konrath, Organometallics 16 (1997)
2386.
[8] J. Dupont, M. Pfeffer, J. Spencer, Eur. J. Inorg. Chem (2001) 1917.
[9] M. Albrecht, G. van Koten, Angew. Chem. Int. Ed 40 (2001) 3750.
[10] N. Beydoun, M. Pfeffer, Synthesis (1990) 729.
[11] P. Espinet, E. Lalinde, M. Marcos, J. Perez, J.L. Serrano, Organometallics 9 (1990)
555.
[12] F. Zamora, V.M. Gonzáles, J.M. Pérez, J.R. Masaguer, C. Alonso, C.N. Ranninger,
Organomet. Chem. 11 (1997) 659.
[13] M. Maestri, D. Sandrini, V. Balzani, A. von Zelewsky, P. Jolliet, Helv. Chim. Acta
71 (1988) 134.
[14] P.K. Santra, C.R. Saha, J. Mol. Catal. 39 (1987) 279.
[15] A. Bose, C.R. Saha, J. Mol. Catal. 49 (1989) 271.
[16] A.C.F. Caires, E.T. Almeida, A.E. Mauro, J.P. Hemerly, S.R. Valentini, Quim. Nova
22 (3) (1999) 329.
[17] E.G. Rodrigues, L.S. Silva, D.M. Fausto, S. Hayashi M, S. Dreher, E.L. Santos, J.B.
Pesquero, L.R. Travassos, A.C.F. Caires, Int. J. Cancer 107 (2003) 498.
[18] A.C.T. North, D.C. Phillips, F.S. Mathews, Acta Crystallogr. A24 (1968) 351.
[19] L.J.J. Farrugia, Appl. Crystallogr. 32 (1999) 837–838.
[20] G.M. Sheldrick, Acta Crystallogr. A64 (2008) 112–122.
[21] A.L. Spek, Acta Crystallogr. D65 (2009) 148–155.
[23] L.J.J. Farrugia, Appl. Crystallogr. 30 (1997) 565.
[22] C.F. Macrae, I.J. Bruno, J.A. Chisholm, P.R. Edgington, P. McCabe, E. Pidcock, L.
Rodriguez-Monge, R. Taylor, J. van de Streek, P.A. Wood, J. Appl. Crystallogr. 41
(2008) 466–470.
from symmetry operation [x, ½ À y, À½ + z], between the centroids,
Cg1Á Á ÁCg2 (4.2362 Å) [where Cg1 is the centroid of the ring {N1, C1,
C2, C3, C4, C5} and Cg2 {C8, C9, C10, C11, C12, C13}]. The second one
is CAXÁ Á Á
p
interactions, from [À1 + x, y, z], C6ABr1Á Á ÁCg2
(3.5999 Å).
The delocalization of
p
electrons of the double bond can be
seen upon the C6, therefore, the bond distances and angles be-
tween the halogen and carbon are not equal (Table 1). This occur-
rence also implies in short contacts between halogens, in crystal
packing.
In the present case, the short anomalous intermolecular interac-
tion is smaller than the sum of the van der Waals radii,
{Br2Á Á ÁBr2AC7 equal 3.502 Å < 3.70 Å}, and they are coming an ste-
reospecific interaction between these atoms. Van der Waals radii
to Br is 1.86 Å [24]. This interaction is shown in Fig. 3, symmetry
operation [2 À x, 1 À y, Àz].
The merger of all these contacts gives rise to supramolecular
assembly, with parallel layers along the crystal lattice (Fig. 4).
The pyridine ring and the phenyl ring are all planar. The angle be-
tween the minimum square planes through the phenyl and the
pyridinyl is 18.1(3)°.
Crystallographic data for the structure reported in this paper
have been deposited with the Cambridge Crystallographic Data
Centre as supplementary publication no. CCDC-798560. Copies
of available material can be obtained, free of charge, on appli-
cation to the CCDC, 12 Union Road, Cambridge CB2 IEZ, UK
[24] G.R. Desiraju, R. Parthasarathy, J. Am. Chem. Soc. 111 (1989) 8725–8726.