2154
M. J. Porter et al. / Bioorg. Med. Chem. 7 (1999) 2145±2156
Scheme 17. Reagents and conditions: i. TBDMS-Cl, imidazole, DMF, 69%; ii. SnCl4, DCM, 78ꢀC, 86%.
17. Bougauchi, M.; Watanabe, S.; Arai, T.; Sasai, H.; Shiba-
saki, M. J. Am. Chem. Soc. 1997, 119, 2329±2330.
18. Elston, C. L.; Jackson, R. F. W.; MacDonald, S. J. F.;
Murray, P. J. Angew. Chem. Int. Ed. Engl. 1997, 36, 410±412.
19. Enders, D.; Zhu, J.; Kramps, L. Liebigs Ann./Receuil 1997,
1101±1113.
20. Wang, Z.-X.; Shi, Y. J. Org. Chem. 1997, 62, 8622±8623.
21. Lygo, B.; Wainwright, P. G. Tetrahedron Lett. 1998, 39,
1599±1602.
Scheme 18. Reagents and conditions: PhOC(S)Cl, Cu2S, THF, 60ꢀC,
89%.
Conclusion
22. Fuchs, F. Ber. 1922, 55, 189.
23. Baird, W.; Parry, E. G.; Robinson, S. Brit. Patent 646033,
1950.
24. Oya, M.; Katakai, R.; Nakai, H.; Iwakura, Y. Chem. Lett.
1973, 1143±1144.
25. Katakai, R.; Iizuka, Y. J. Org. Chem. 1985, 50, 715±716.
26. Daly, W. H.; Poche, D. Tetrahedron Lett. 1988, 29, 5859±
5862.
The Julia±Colonna oxidation has emerged as a useful
methodology for the preparation of optically active
epoxides from a,b-unsaturated ketones. Given the com-
mercial availability of the active catalyst81 it is clear that
further examples of the use of this simple protocol will
appear. However the application of polyamino acid
catalysis to other stereoselective oxidations and, indeed,
to completely dierent processes must await a clear
understanding of the ordering of the reactants on the
chiral surface of the catalyst.
27. Leuchs, H. Ber. 1906, 39, 857±861.
28. Leuchs, H.; Geiger, W. Ber. 1908, 41, 1721±1726.
29. Woodward, R. B.; Schramm, C. H. J. Am. Chem. Soc.
1947, 69, 1551±1552.
30. Coleman, D. J. Chem. Soc. 1950, 3222±3229.
31. Lasterra-Sanchez, M. E.; Felfer, U.; Mayon, P.; Roberts,
S. M.; Thornton, S. R.; Todd, C. J. J. Chem. Soc., Perkin
Trans. 1 1996, 343±348.
References
1. Wong, C. H.; Whitesides, G. M. Enzymes in Organic
Synthesis; Pergamon: Oxford, 1994.
2. Drauz, K.; Waldmann, H., Eds. Enzyme Catalysts in
Organic Synthesis; VCH: Weinheim, 1995.
3. Faber, K. Biotransformations in Organic Chemistry;
Springer-Verlag: Berlin, 1996.
4. For some recent examples, see Roberts, S. M. J. Chem. Soc.,
Perkin Trans 1 1998, 157±169.
5. de Raadt, A.; Griengl, H.; Petsch, M.; Plachota, P.; Schoo,
N.; Weber, H.; Braunegg, G.; Kopper, I.; Kreiner, M.; Zeiser,
A.; Kieslich, K. Tetrahedron: Asymmetry 1996, 7, 467±472.
6. de Raadt, A.; Griengl, H.; Petsch, M.; Plachota, P.; Schoo,
N.; Weber, H.; Braunegg, G.; Kopper, I.; Kreiner, M.; Zeiser,
A. Tetrahedron: Asymmetry 1996, 7, 473±490.
32. For reviews on polymerisation of NCAs, see Sekiguchi, H.
Pure Appl. Chem. 1981, 53, 1689±1714 and ref. 33.
33. Kricheldorf, H. R. In Comprehensive Polymer Science;
Allen, G.; Bevington, J. C., Eds.; Pergamon: Oxford, 1989;
Vol. 3, pp 531±551.
34. Ban®, S.; Colonna, S.; Molinari, H.; Julia, S.; Guixer, J.
Tetrahedron 1984, 40, 5207±5211.
35. Itsuno, S.; Sakakura, M.; Ito, K. J. Org. Chem. 1990, 55,
6047±6049.
36. Cappi, M. W.; Chen, W.-P.; Flood, R. W.; Liao, Y.-W.;
Roberts, S. M.; Skidmore, J.; Smith, J. A.; Williamson, N. M.
Chem. Commun. 1998, 1159±1160.
37. Hirayama, C.; Ihara, H.; Tanaka, K. J. Chromat. 1988,
450, 271±276.
7. de Raadt, A.; Griengl, H.; Petsch, M.; Plachota, P.; Schoo,
N.; Weber, H.; Braunegg, G.; Kopper, I.; Kreiner, M.; Zeiser,
A. Tetrahedron: Asymmetry 1996, 7, 491±496.
8. See, for example, Dingler, C.; Ladner, W.; Krei, G. A.;
Cooper, B.; Hauer, B. Pesticide Science 1996, 46, 33±35.
9. Hudlicky, T.; Thorpe, A. J. Chem. Commun. 1996, 1993±
2000.
38. Sinibaldi, M.; Catellani, L.; Federici, F.; Messina, A. J.
Liq. Chromat. 1993, 16, 2977±2992.
39. Shyu, S. S.; Kuroyanagi, Y.; Seno, M. Colloid Polym. Sci.
1988, 266, 587±593.
40. Kuroyanagi, Y.; Kim, E.; Kenmochi, M.; Ui, K.;
Kageyama, H.; Nakamura, M.; Takeda, A.; Shioya, N. J.
Appl. Biomater. 1992, 3, 153±161.
10. Banwell, M.; De Savi, C.; Watson, K. Chem. Commun.
1998, 1189±1190.
41. Akabori, S.; Sakurai, S.; Izumi, Y.; Fujii, Y. Nature 1956,
178, 323±324.
11. See, for example, Mahmoudian, M.; Michael, A. Appl.
Microbiol. Biotechnol. 1992, 37, 23±27 and ref. 12.
12. Mahmoudian, M.; Michael, A. Appl. Microbiol. Bio-
technol. 1992, 37, 28±31.
42. Alper, H., Hamel, N. J. Chem. Soc., Chem. Commun. 1990,
135±136.
43. Abe, S.; Nonaka, T.; Fuchigami, T. J. Am. Chem. Soc.
1983, 105, 3630±3632.
13. Julia, S.; Masana, J.; Vega, J. C. Angew. Chem. Int. Ed.
Engl. 1980, 19, 929±931.
44. Nonaka, T.; Abe, S.; Fuchigami, T. Bull. Chem. Soc. Jpn.
1983, 56, 2778±2783.
14. For recent complementary reviews on this subject, see Ebra-
him, S.; Wills, M. Tetrahedron: Asymmetry 1997, 8, 3163±3173
and ref. 15.
45. Abe, S.; Nonaka, T. Chem. Lett. 1983, 1541±1542.
46. Abe, S.; Fuchigami, T.; Nonaka, T. Chem. Lett. 1983,
1033±1036.
15. Pu, L. Tetrahedron: Asymmetry 1998, 9, 1457±1477.
16. For other recently reported methods for asymmetric
epoxidation of enones, see Baccin, C.; Gusso, A.; Pinna, F.;
Strukul, G. Organometallics 1995, 14, 1161±1167 and refs. 17±21.
47. Komori, T.; Nonaka, T. J. Am. Chem. Soc. 1983, 105,
5690±5691.
48. Komori, T.; Nonaka, T. J. Am. Chem. Soc. 1984, 106,
2656±2659.