Please d oC hn eo mt Ca do mj u ms t margins
Page 4 of 5
COMMUNICATION
Journal Name
(
4
T
min = 77 K, Pmax = 65 bar) to (Tmax = 160 K, Pmin = 5 bar), are
Zaworotko and J. Bai, Angew. Chem., Int. Ed., 2017, 56, 11426.
DOI: 10.1039/C9CC06239D
7.4 g/L and 7.1 wt%, rivaling the best-performing material
6
(a) H. Wu, W. Zhou and T. Yildirim, J. Am. Chem. Soc., 2009,
1
7
IRMOF-20 (47 g/L and 8.4 wt%) . In addition, ZJU-105a and
PCN-46a also exhibit high volumetric CO storage capacities of
28 and 309 cm (STP) cm (Table S5, ESI†). Finally, we 7 (a) C.-C. Liang, Z.-L. Shi, C.-T. He, J. Tan, H.-D. Zhou, H.-L. Zhou,
1
31, 4995; (b) S. Ma, D. Sun, J. M. Simmons, C. D. Collier, D.
2
Yuan and H.-C. Zhou, J. Am. Chem. Soc., 2008, 130, 1012.
3
-3
3
Y. Lee and Y.-B. Zhang, J. Am. Chem. Soc., 2017, 139, 13300;
2 2
calculated the Qst values of H and CO for both MOFs. As
(
b) L. D. Tran, J. I. Feldblyum, A. G. Wong-Foy and A. J.
shown in Fig. S25-30 (ESI†), the Qst values of ZJU-105a for both
and CO are much higher than those of PCN-46a, consistent
well with those for CH , further confirming that PCN-46a has a
Matzger, Langmuir, 2015, 31, 2211; (c) L. Li, J. G. Bell, S. Tang,
X. Lv, C. Wang, Y. Xing, X. Zhao and K. M. Thomas, Chem.
Mater., 2014, 26, 4679; (d) T. Tian, Z. Zeng, D. Vulpe, M. E.
Casco, G. Divitini, P. A. Midgley, J. Silvestre-Albero, J. C. Tan, P.
Z. Moghadam and D. Fairen-Jimenez, Nat. Mater., 2018, 17,
H
2
2
4
weaker interaction with various gas molecules.
In summary, we herein realized that the systematical tuning
of pore size and chemistry in a series of isomorphic MOFs
based on NOTT-102 can effectively regulate the methane
storage and working capacities. The use of alkynyl and
naphthalene replacing phenyl in the NOTT-102 backbone has
enabled a gradually decreased low-pressure CH uptake from
4
ZJU-105a to PCN-46a, combined with a comparable total
storage capacity at high pressure. PCN-46a thus exhibits the
1
74.
8
(a) J. A. Mason, J. Oktawiec, M. K. Taylor, M. R. Hudson, J.
Rodriguez, J. E. Bachman, M. I. Gonzalez, A. Cervellino, A.
Guagliardi, C. M. Brown, P. L. Llewellyn, N. Masciocchi and J.
R. Long, Nature, 2015, 527, 357; (b) Q.-Y. Yang, P. Lama, S.
Sen, M. Lusi, K. J. Chen, W.-Y. Gao, M. Shivanna, T. Pham, N.
Hosono, S. Kusaka, J. J. t. Perry, S. Ma, B. Space, L. J. Barbour,
S. Kitagawa and M. J. Zaworotko, Angew. Chem., Int. Ed.,
2
018, 57, 5684; (c) T. Kundu, B. B. Shah, L. Bolinois and D.
Zhao, Chem. Mater., 2019, 31, 2842.
98 K) among the isomorphic MOFs, making it among the best 9 (a) D. Alezi, Y. Belmabkhout, M. Suyetin, P. M. Bhatt, Ł. J.
3
3
highest working capacity of 203 cm (STP) cm (at 5–80 bar and
2
Weseliński, V. Solovyeva, K. Adil, I. Spanopoulos, P. N.
Trikalitis, A.-H. Emwas and M. Eddaoudi, J. Am. Chem. Soc.,
4
performing porous materials for CH storage. This work may
provide some guidance for development of new MOFs with
common alkynyl connectivity instead of phenyl to reduce low-
pressure CH absorption and thus to improve volumetric
4
working capacity.
2
015, 137, 13308; (b) B. Tu, L. Diestel, Z.-L. Shi, W. R. L. N.
Bandara, Y. Chen, W. Lin, Y.-B. Zhang, S. G. Telfer and Q. Li,
Angew. Chem., Int. Ed., 2019, 131, 5402; (c) C. E. Wilmer, O.
K. Farha, T. Yildirim, I. Eryazici, V. Krungleviciute, A. A.
Sarjeant, R. Q. Snurr and J. T. Hupp, Energy Environ. Sci.,
This research was supported by the “National 1000 Young
Talent Program”, the “Zhejiang University 100 Talent Program”,
and the National Science Foundation of China (51803179).
2
013, 6, 1158.
1
0 (a) F. Gándara, H. Furukawa, S. Lee and O. M. Yaghi, J. Am.
Chem. Soc., 2014, 136, 5271; (b) Y. Peng, G. Srinivas, C. E.
Wilmer, I. Eryazici, R. Q. Snurr, J. T. Hupp, T. Yildirim and O. K.
Farha, Chem. Commun., 2013, 49, 2992; (c) D. Yuan, D. Zhao,
D. Sun and H.-C. Zhou, Angew. Chem., Int. Ed., 2010, 49, 5357.
Conflicts of interest
There are no conflicts to declare.
11 B. Li, H.-M. Wen, H. Wang, H. Wu, M. Tyagi, T. Yildirim, W.
Zhou and B. Chen, J. Am. Chem. Soc., 2014, 136, 6207.
1
2 Y. Yan, D. I. Kolokolov, I. d. Silva, A. G Stepanov, A. J. Blake, A.
Dailly, P. Manuel, C. C Tang, S. Yang and M. Schröder, J. Am.
Chem. Soc., 2017, 139, 13349.
Notes and references
1
Y. He, W. Zhou, G. Qian and B. Chen, Chem. Soc. Rev., 2014,
3, 5657.
(a) H. Furukawa, K. E. Cordova, M. O'Keeffe and O. M. Yaghi,
4
13 J. Jiang, H. Furukawa, Y.-B. Zhang and O. M. Yaghi, J. Am.
Chem. Soc., 2016, 138, 10244.
Science, 2013, 341, 1230444; (b) B. Li, H.-M. Wen, Y. Cui, W. 14 (a) H.-M. Wen, B. Li, L. Li, R.-B. Lin, W. Zhou, G. Qian and B.
2
Zhou, G. Qian and B. Chen, Adv. Mater., 2016, 28, 8819.
(a) H. Wang and J. Li, Acc. Chem. Res., 2019, 52, 1968; (b) P.
Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K.
Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi
and M. Zaworotko, Nature, 2013, 495, 80; (c) H. Wang, Q.-L.
Zhu and Q. Xu, Chem, 2017, 2, 52; (d) B. Li, H.-M. Wen, Y. Yu,
Y. Cui, W. Zhou, B. Chen and G. Qian, Mater. Today Nano,
Chen, Adv. Mater., 2018, 30, 1704792; (b) Y. He, W. Zhou, T.
Yildirim and B. Chen, Energy Environ. Sci., 2013, 6, 2735; (c) Y.
Yan, M. Juricek, F. X. Coudert, N. A. Vermeulen, S. Grunder, A.
Dailly, W. Lewis, A. J. Blake, J. F. Stoddart and M. Schröder, J.
Am. Chem. Soc., 2016, 138, 3371; (d) X. Lin, I. Telepeni, A. J.
Blake, A. Dailly, C. M. Brown, J. M. Simmons, M. Zoppi, G. S.
Walker, K. M. Thomas, T. J. Mays, P. Hubberstey, N. R.
Champness and M. Schröder, J. Am. Chem. Soc., 2009, 131,
2159.
3
2
018, 2, 21; (e) H.-M. Wen, C. Liao, L. Li, H. Wu, W. Zhou, J.
Hu and B. Chen, J. Mater. Chem. A, 2019, 7, 3128.
4
5
(a) Y. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. 15 D. Zhao, D. Yuan, A. Yakovenko and H.-C. Zhou, Chem.
Farha and T. Yildirim, J. Am. Chem. Soc., 2013, 135, 11887; (b)
Commun., 2010, 46, 4196.
J. A. Mason, M. Veenstra and J. R. Long, Chem. Sci., 2014, 5, 16 (a) J.-M. Lin, C.-T. He, Y. Liu, P.-Q. Liao, D.-D. Zhou, J.-P. Zhang
3
2; (c) T. A. Makal, J.-R. Li, W. Lu and H.-C. Zhou, Chem. Soc.
and X.-M. Chen, Angew. Chem., Int. Ed., 2016, 55, 4752; (b) I.
Spanopoulos, C. Tsangarakis, E. Klontzas, E. Tylianakis, G.
Froudakis, K. Adil, Y. Belmabkhout, M. Eddaoudi and P. N.
Trikalitis, J. Am. Chem. Soc., 2016, 138, 1568; (c) H. Wu, J. M.
Simmons, Y. Liu, C. M. Brown, X.-S. Wang, S. Ma, V. K.
Peterson, P. D. Southon, C. J. Kepert, H.-C. Zhou, T. Yildirim
and W. Zhou, Chem.–Eur. J., 2010, 16, 5205.
Rev., 2012, 41, 7761; (d) B. Li, H.-M. Wen, W. Zhou, J. Q. Xu
and B. Chen, Chem, 2016, 1, 557.
(a) Z. Hulvey, B. Vlaisavljevich, J. A. Mason, E. Tsivion, T. P.
Dougherty, E. D. Bloch, M. Head-Gordon, B. Smit, J. R. Long
and C. M. Brown, J. Am. Chem. Soc., 2015, 137, 10816; (b) C.-
X. Chen, Z.-W. Wei, J.-J. Jiang, S.-P. Zheng, H.-P. Wang, Q.-F.
Qiu, C.-C. Cao, D. Fenske and C.-Y. Su, J. Am. Chem. Soc., 2017, 17 A. Ahmed, Y. Liu, J. Purewal, L. D. Tran, A. G. Wong-Foy, M.
1
39, 6034; (c) M. Zhang, W. Zhou, T. Pham, K. A. Forrest, W.
Veenstra, A. J. Matzger and D. J. Siegel, Energy Environ. Sci.,
017, 10, 2459.
2
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins