MIDYA ET AL.
11
16. Khan Z, Raju, Akram M, Kabir-ud-Din. Oxidation of lactic acid
by water-soluble (colloidal) manganese dioxide. Int J Chem Kinet.
2004;36:359–366.
34. Sen PK, Midya JK, Bysakh S, Pal B. Kinetic and mechanistic stud-
ies on the oxidation of D-glucose by MnO2 nanoparticles. Effect
of microheterogeneous environments of CTAB, Triton X-100 and
Tween 20. Mol Catal. 2017;440:75–86.
17. Lodish H, Berk A, Zipursky SL. Molecular Cell Biology. 4th ed.
New York, NY: W. H. Freeman; 2000.
35. Akram M, Altaf M, Kabir-ud-Din. Kinetics of colloidal MnO2
reduction by L-arginine in absence and presence of surfactants. Col-
loid J. 2011;73:149–157.
18. Jequier E. Carbohydrates as a source of energy. Am J Clin Nutr.
1994;59:6825–6855.
36. Akram M, Altaf M, Kabir-ud-Din. Oxidative degradation of dipep-
tide (glycyl-glycin) by water-soluble colloidal manganese dioxide
in the aqueous and micellar media. Colloids Surf, B. 2011;82:217–
223.
19. Gupta M, Saha SK, Banerjee P. Kinetics and mechanism of the
reduction of dodecatungstocobaltate (III) by D-fructose, D-glucose,
and D-mannose: comparison between keto- and aldohexoses. J
Chem Soc, Perkin Trans. 1978;2:1781–1785.
37. Das D, Sen PK, Das K. Carbohydrate electro-oxidation on chemi-
20. Signorella S, Civllo L, Lafarga R, Sala LF. The role of acetate in
the oxidation of D-galactose by Cu(II) in acetate-acetic acid buffers.
New J Chem. 1996;20:989–991.
cally prepared MnO2. J Electroanal Chem. 2007;611:19–25.
38. Feigl F. Spot Tests in Organic Analysis. New York, NY: Elsevier;
1975:452.
21. Ribeiro ACF, Lobo VMM, Valente AJM, et al. Association between
ammonium monovanadate and ꢀ-cyclodextrin as seen by NMR and
transport techniques. Polyhedron. 2006;25:3581–3587.
39. Andrabi SMZ, Malik MA, Khan Z. Permanganate partitioning in
cationic micelles of cetyltrimethylammonium bromide: a kinetic
study of D-fructose oxidation. Colloids Surf A: Physicochem Eng
Asp. 2007;299:58–64.
22. Olavi P, Virtanen I, Kurkisuo S. Oxidation of D-fructose with
vanadium(V): a kinetic approach. Carbohydr Res. 1985;138:215–
223.
40. Kabir-ud-Din, Ali MS, Khan Z. Effect of surfactant micelles on the
kinetics of oxidation of D-fructose by cerium(IV) in sulfuric acid
medium. Int J Chem Kinet. 2006;38:18–25.
23. Sen Gupta KK, Begum BA, Pal B. Kinetic behavior and rela-
tive reactivities of some aldoses, amino sugars and methylated
sugars towards platinum(IV) in alkaline medium. Carbohydr Res.
1998;309:303–310.
41. Kabir-ud-Din, Morshed AMA, Khan Z. Influence of sodium
dodecyl sulfate/Triton X-100 micelles on the oxidation of D-
fructose by chromic acid in presence of HClO4. Carbohydr Res.
2002;337:1573–1583.
24. Sen Gupta KK, Begum BA. Kinetics and mechanism of the
oxidation of some aldoses, amino sugars and methylated sug-
ars by tris(pyridine-2-carboxylato)manganese(III) in weakly acidic
medium. Carbohydr Res. 1999;315:70–75.
42. Singh AK, Srivastava J, Rahmani S, Singh V. Pd(II)-catalysed
and Hg(II)-co-catalysed oxidation of D-glucose and D-fructose
by N-bromoacetamide in the presence of perchloric acid: a
kinetic and mechanistic study. Carbohydr Res. 2006;341:397–
409.
25. Sen Gupta KK, Pal B, Begum BA. Reactivity of some sugars and
sugar phosphates towards gold(III) in sodium acetate-acetic acid
buffer medium. Carbohydr Res. 2001;330:115–123.
43. Azmat R, Naz R, Qamar N, Malik I. Kinetics and mechanisms of
oxidation of D-fructose and D-lactose by permanganate ion in acidic
medium. Nat Sci. 2012;4:466–478.
26. Fendler JH, Fendler EJ. Catalysis in Micellar and Macromolecular
Systems. New York, NY: Academic Press; 1975.
27. Bunton CA. Reactivity in aqueous association colloids. Descrip-
tive utility of the pseudophase model. J Mol Liq. 1997;72:231–
249.
44. Qamruzzaman, Nasar A. Degradation of tricyclazole by colloidal
manganese dioxide in the absence and presence of surfactants. J
Ind Eng Chem. 2014;20:897–902.
28. Cheong MY, Ariffin A, Khan MN. A comparative analysis of pseu-
dophase ion-exchange (PIE) model and Berezin pseudophase (BPP)
model: analysis of kinetic data for ionic micellar-mediated semi-
ionic bimolecular reaction. Bull Korean Chem Soc. 2007;28:1135–
1140.
45. Brinchi L, Profio PD, Germani R, Savelli G, Tugliani M, Bun-
ton CA. Hydrolysis of dinitroalkoxyphenyl phosphates in aque-
ous cationic micelles. Acceleration by premicelles. Langmuir.
2000;16:10101–10105.
46. Sen PK, Chatterjee P, Pal B. Evidence of co-operativity in the pre-
micellar region in the hydrolytic cleavage of phenyl salicylate in the
presence of cationic surfactants of CTAB, TTAB and CPC. J Mol
Catal A: Chem. 2015;396:23–30.
29. Holmberg K. Organic reactions in microemulsions. Eur J Org
Chem. 2007;5:731–742.
30. Mao S, Chen Z, An X, Shen W. Study of the alkaline fading of phe-
nolphthalein in microemulsions. J Phys Chem A. 2011;115:5560–
5567.
47. Sen PK, Talukder S, Pal B. Specific interactions of anions and pre-
micelles in the alkaline fading of crystal violet carbocation. Colloids
Surf A: Physicochem Eng Asp. 2015;467:259–269.
31. Sen PK, Gani N, Pal B. Effects of non-ionic micellar aggregates on
the electron transfer reaction between L-glutamic acid and gold(III)
complexes. Int J Chem Kinet. 2012;44:482–493.
48. Sen PK, Mukherjee P, Pal B. Effects of pre-micelles of anionic sur-
factant SDS on the electron transfer reaction between methylene
blue and ascorbic acid. J Mol Liq. 2016;224:472–479.
32. Sen PK, Gani N, Pal B. Effects of microheterogeneous environ-
ments of SDS, TX-100 and Tween 20 on the electron transfer reac-
−
−
49. Maiti K, Sen PK, Pal B. influence of premicelles and micellar aggre-
gates of ionic and nonionic surfactants in the oxidative decarboxy-
lation of L-lycine by gold(III) complexes. J Mol Liq. 2018;251:238–
248.
tion between L-leucine and AuCl4 /AuCl3(OH) . Ind Eng Chem
Res. 2013;52:2803–2813.
33. Samiey B, Dalvand Z. Study of fuchsin acid fading in micellar
media. Int J Chem Kinet. 2014;46:651–661.