of a polymer (entitled “side chain pseudopolyrotaxanes”),3-5
are especially fascinating due to their unusual architectures and
the different properties from conventional polymers. Therefore,
designing and synthesizing pseudopolyrotaxanes with novel
topologies is desirable for both polymer science and supramo-
lecular chemistry. Recently, we successfully constructed not only
a series of pseudopolyrotaxanes based on â-cyclodextrins (â-
CDs)6 and modified â-CDs,7 but also bis(pseudopolyrotaxane)s
based on bridged bis(â-CD)s.8 Here, we report a simple way to
prepare 2D pseudopolyrotaxane 3 in which cyclic molecules
are threaded onto both the polymeric main chain and its side
chains (Scheme 1). Furthermore, the 2D pseudopolyrotaxane
can turn into a main-chain pseudopolyrotaxane in the presence
of base because of the cyclic cucurbit[6]uril (CB[6]) molecules
dethreading from the side chain of 3, and vice versa. Addition
of R-CDs may result in a reversible switch between two different
2D pseudopolyrotaxanes by acid-base control.
Reversible 2D Pseudopolyrotaxanes Based On
Cyclodextrins and Cucurbit[6]uril
Yu Liu,* Chen-Feng Ke, Heng-Yi Zhang, Wei-Jia Wu, and
Jun Shi
Department of Chemistry, State Key Laboratory of
Elemento-Organic Chemistry, Nankai UniVersity,
Tianjin 300071, P. R. China
ReceiVed August 17, 2006
To obtain the 2D pseudopolyrotaxane 3, pseudorotaxane 2
was first synthesized by reaction of CB[6] with 6-[(6-amino-
hexyl)amino]-6-deoxy-â-CD chloride (1) in 81% yield. The 1:1
1/CB[6] complexation in 2 was confirmed by the results of
elemental analysis, MS, and 1H NMR spectroscopy. In the ESI-
MS spectrum of pseudorotaxane 2, a signal was observed at
m/z (M2+) ) 1115.8, indicating the formation of the pseudoro-
In this paper, a pseudorotaxane (2) was synthesized by
reaction of cucurbit [6]uril with 6-[(6-aminohexyl)amino]-
6-deoxy-â-cyclodextrin chloride. Subsequently, pseudoro-
taxanes 2 were further assembled to form a 2D pseudopoly-
rotaxane (3) through an R,ω-PPG2000 diamino polymer
threading the cavities of cyclodextrins in 2, and the resulting
pseudopolyrotaxane was comprehensively characterized by
FT-IR, NMR, TG-DTA, elemental analysis, and transmission
electron microscopy. Significantly, the 2D pseudopolyro-
taxane can turn into a main-chain pseudopolyrotaxane in the
presence of base, and then the addition of R-cyclodextrins
may result in a reversible switch between two different 2D
pseudopolyrotaxanes.
(2) (a) Gibson, H. W.; Marand, H. AdV. Mater. 1993, 5, 11-21. (b) Fyfe,
M. C. T.; Stoddart, J. F. Acc. Chem. Res. 1997, 30, 393-401. (c) Raymo,
F. M.; Stoddart, J. F. Chem. ReV. 1999, 99, 1643-1664. (d) Breault, G.
A.; Hunter, C. A.; Mayers, P. C. Tetrahedron 1999, 55, 5265-5293. (e)
Kim, K. Chem. Soc. ReV. 2002, 31, 96-107. (f) Huang, F.; Zakharov, L.
N.; Rheingold, A. L.; Jones, J. W.; Gibson, H. W. Chem. Commun. 2003,
2122-2123. (g) Huang, F.; Gibson, H. W. J. Am. Chem. Soc. 2004, 126,
14738-14739. (h) Venturi, M.; Dumas, S.; Balzani, V.; Cao, J.; Stoddart,
J. F. New J. Chem. 2004, 28, 1032-1037. (i) Huang, F.; Zakharov, L. N.;
Rheingold, A. L.; Ashraf-Khorassani, M.; Gibson, H. W. J. Org. Chem.
2005, 70, 809-813. (j) Huang, F.; Lam, M.; Mahan, E. J.; Rheingold, A.
L.; Gibson, H. W. Chem. Commun. 2005, 3268-3270. (k) Ashton, P. R.;
Philp, D.; Spencer, N.; Stoddart, J. F. J. Chem. Soc., Chem. Commun. 1991,
1677-1678.
(3) (a) Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H.-J.; Kim, K. Acc.
Chem. Res. 2003, 36, 621-630. (b) Lagona, J.; Mukhopadhyay, P.;
Chakrabarti, S.; Isaacs, L. Angew. Chem., Int. Ed. 2005, 44, 4844-4870.
(c) Choi, S.; Lee, J. W.; Ko, Y. H.; Kim, K. Macromolecules 2002, 35,
3526-3531. (d) Tan, Y.; Choi, S. W.; Lee, J. W.; Ko, Y. H.; Kim, K.
Macromolecules 2002, 35, 7161-7165.
(4) (a) Wenz, G.; Han, B.-H.; Muller, A. Chem. ReV. 2006, 106, 782-
817. (b) Huang, F.-H.; Gibson, H. W. Prog. Polym. Sci. 2005, 30, 982-
1018. (c) Harada, A. Acc. Chem. Res. 2001, 34, 456-464. (d) Tomatsu, I.;
Hashidzume, A.; Harada, A. Angew. Chem., Int. Ed. 2006, 45, 4605-4608.
(e) Ooya, T.; Eguchi, M.; Yui, N. J. Am. Chem. Soc. 2003, 125, 13016-
13017. (f) Ooya, T.; Choi, H. S.; Yamashita, A.; Yui, N.; Sugaya, Y.; Kano,
A.; Maruyama, A.; Akita, H.; Ito, R.; Kogure, K.; Harashima, H. J. Am.
Chem. Soc. 2006, 128, 3852-3853.
(5) (a) Rekharsky, M. V.; Yamamura, H.; Kawai, M.; Osaka, I.; Arakawa,
R.; Sato, A.; Ko, Y. H.; Selvapalam, N.; Kim, K.; Inoue, Y. Org. Lett.
2006, 8, 815-818. (b) Hou, Z.-S.; Tan, Y.-B.; Kim, K.; Zhou, Q.-F. Polymer
2006, 47, 742-750. (c) Hou, Z.-S.; Tan, Y.-B.; Huang, Y.-L.; Zhou, Q.-F.
Huaxue Xuebao 2005, 63, 653-657.
(6) (a) Liu, Y.; Zhao, Y.-L.; Zhang, H.-Y.; Song, H.-B. Angew. Chem.,
Int. Ed. 2003, 42, 3260-3263. (b) Liu, Y.; Zhao, Y.-L.; Zhang, H.-Y.; Li,
X.-Y.; Liang, P.; Zhang, X.-Z.; Xu, J.-J. Macromolecules 2004, 37, 6362-
6369.
Pseudorotaxanes not only are the supramolecular precursors
of rotaxanes and catenanes but also viewed as the most
interesting prototypes for molecular machines because of their
dethreading/rethreading motions,1 so investigations on pseu-
dorotaxanes have gained extensive attention in recent decades.2
In this respect, pseudopolyrotaxanes, in which many cyclic
molecules are threaded onto either a polymeric main chain
(entitled “main chain pseudopolyrotaxanes”) or the side chains
* To whom correspondence should be addressed. Fax: +86-22-23503625.
(1) (a) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Angew.
Chem., Int. Ed. 2000, 39, 3348-3391. (b) Special issue of Acc. Chem. Res.
2001, 34, 409. (c) Molecular Machines and Motors; Sauvage, J.-P., Ed.;
Springer-Verlag: Berlin, 2001; Vol. 99 in the series Structure and Bonding.
(d) Balzani, V.; Credi, A.; Venturi, M. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 4814-4817. (e) Balzani, V.; Credi, A.; Venturi, M. Molecular DeVices
and MachinessA Journey into the Nano World; Wiley-VCH: Weinheim,
2003. (f) Badjic, J. D.; Balzani, V.; Credi, A.; Silvi, S.; Stoddart, J. F. Science
2004, 303, 1845-1849. (g) Koumura, N.; Zijlstra, R. W. J.; A. Van, Delden,
R.; Harada, N.; Feringa, B. L. Nature 1999, 401, 152-155. (h) Kelly, T.
R.; Silva, H. D.; Silva, R. A. Nature 1999, 401, 150-152. (i) Raehm, L.;
Kern, J.-M.; Sauvage, J.-P. Chem. Eur. J. 1999, 5, 3310-3317. (j)
Bermudez, V.; Capron, N.; Gase, T.; Gatti, F. G.; Kajzar, F.; Leigh, D. A.;
Zerbetto, F.; Zhang, S. Nature 2000, 406, 608-611. (k) Gatti, F. G.; Leon,
S.; Wong, J. K. Y.; Bottari, G.; Allieri, A.; Morales, M. A. F.; Teat, S. J.;
Frochet, C.; Leigh, D. A.; Brouwer, A. M.; Zerbetto, F. Proc. Natl. Acad.
Sci. U.S.A. 2003, 100, 10-14. (l) Cheng, P.-N.; Chiang, P.-T.; Chiu, S.-H.
Chem. Commun. 2005, 1285-1287.
(7) (a) Liu, Y.; Wang, H.; Chen, Y.; Ke, C.-F.; Liu, M. J. Am. Chem.
Soc. 2005, 127, 657-666. (b) Liu, Y.; Zhao, Y.-L.; Chen, Y.; Wang, M.
Macromol. Rapid Commun. 2005, 26, 401-406.
(8) (a) Liu, Y.; Chen, Y. Acc. Chem. Res. 2006, 39, 681-691. (b) Liu,
Y.; You, C.-C.; Zhang, H.-Y.; Kang, S.-Z.; Zhu, C.-F.; Wang, C. Nano
Lett. 2001, 1, 613-616. (c) Liu, Y.; Li, L.; Zhang, H.-Y.; Zhao, Y.-L.;
Wu, X. Macromelecules 2002, 35, 9934-9938. (d) Liu, Y.; Song, Y.; Wang,
H.; Zhang, H.-Y.; Li, X.-Q. Macromelecules 2004, 37, 6370-6375.
10.1021/jo0617159 CCC: $37.00 © 2007 American Chemical Society
Published on Web 12/06/2006
280
J. Org. Chem. 2007, 72, 280-283