Organometallics
Communication
detected. This fact, together with the establishment of CH/π
interactions between the Hβ proton of the coordinated
nitroalkene and the pro-R phenyl ring of the P(2)Ph2 group
of the diphosphane, explains the high ee obtained. Detection of
the aci-nitro ligated complex 3 opens the door to application of
complexes of the type 1 in related catalytic processes involving
nitroalkenes as electrophiles as well as to enantioselective
catalytic tandem reactions pivoting around coordinated nitro-
nates. Further studies along these lines are currently under
investigation in our laboratory.
ASSOCIATED CONTENT
* Supporting Information
■
S
Text, figures, tables, and a CIF file giving experimental details,
spectroscopic data, and X-ray crystallographic data, including
full details of the structural analysis of complex 2d. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Author
(R.R.).
■
Notes
The authors declare no competing financial interest.
Figure 4. Selected regions of the 1H and 31P NMR spectra of a 1/10/5
catalyst/trans-β-nitrostyrene/indole molar ratio mixture at 193 K: (A)
spectra of 2a; (B) spectra after the addition of indole and trans-β-
nitrostyrene; (C−E) spectra recorded at 193 K after successive heating
at 223 K for 20 min; (F) spectra after total consumption of the indole.
The asterisk denotes residual CHDCl2.
ACKNOWLEDGMENTS
The authors aknowledge the Ministerio de Educacion
(Grants CTQ 2009-10303/BQU and CTQ 2012-32095) and
■
́
y Ciencia
Gobierno de Aragon
Organometalicos Enantioselectivos) for financial support.
This work was supported by the CONSOLIDER INGENIO
́
(Grupo Consolidado: Catalizadores
́
́
́
2010 program under the project “Factorıa de Cristalizacion”
(CSD2006-0015). R.R. acknowledges the CSIC and European
Social Fund for a JAE-Doc grant.
REFERENCES
■
(1) Catalytic Asymmetric Friedel-Crafts Alkylations; Bandini, M.,
Umani-Ronchi, A., Eds.; Wiley-VCH: Weinheim, Germany, 2009.
(2) (a) Gao, J.-R.; Wu, H.; Xiang, B.; Yu, W.-B.; Han, L.; Jia, Y.-X. J.
Am. Chem. Soc. 2013, 135, 2983−2986. (b) Arai, T.; Awata, A.; Wasai,
M.; Yokoyama, N.; Masu, H. J. Org. Chem. 2011, 76, 5450−5456.
(c) Arai, T.; Wasai, M.; Yokoyama, N. J. Org. Chem. 2011, 76, 2909−
2912. (d) Guo, F.; Chang, D.; Lai, G.; Zhu, T.; Xiong, S.; Wang, S.;
Wang, Z. Chem. Eur. J. 2011, 17, 11127−11130. (e) Liu, H.; Du, D.-M.
Adv. Synth. Catal. 2010, 352, 1113−1118. (f) Sheng, Y.-F.; Li, G.-Q.;
Kang, Q.; Zhang, A.-J.; You, S.-L. Chem. Eur. J. 2009, 15 (3351), 3354.
(g) Yokoyama, N.; Arai, T. Chem. Commun. 2009, 3285−3287.
(h) Itoh, J.; Fuchibe, K.; Akiyama, T. Angew. Chem., Int. Ed. 2008, 47,
4016−4018. (i) Bandini, M.; Garelli, A.; Rovinetti, M.; Tommasi, S.;
Umani-Ronchi, A. Chirality 2005, 17, 522−529. (j) Herrera, R. P.;
Sgarzani, V.; Bernardi, L.; Ricci, A. Angew. Chem. Int. Ed. 2005, 44,
6576−6579. (k) Zhuang, W.; Hazell, R. G.; Jørgensen, A. Org. Biomol.
Chem. 2005, 3, 2566−2571.
Figure 5. Proposed catalytic cycle.
the nitroalkene complex 2a. Indole attack on the activated Cβ of
the coordinated nitroalkene, which renders aci-nitro complex 3,
is the enantioselectivity-determining step. Reaction of 3 with
trans-β-nitrostyrene eliminates the aci-nitro ligand 4 and
regenerates complex 2a that restarts the cycle. Finally, free
aci-nitro 4 spontaneously rearranges to the FC adduct 5.
In summary, precatalyst 1 is well suited for FC reactions
between trans-β-nitrostyrenes and indoles. ee values up to 94%
can be achieved. Metal−nitroalkene, metal−aci-nitro and free
aci-nitro intermediates, which have been detected and
spectroscopically characterized, make up a plausible catalytic
cycle that accounts for the catalytic outcome. For the metal−
nitroalkene complexes only one epimer at metal has been
́ ́
(3) (a) Marques-Lopez, E.; Alcaine, A.; Tejero, T.; Herrera, R. P. Eur.
J. Org. Chem. 2011, 3700−3705. (b) Ganesh, M.; Seidel, D. J. Am.
Chem. Soc. 2008, 130, 16464−16465. (c) Fleming, E. M.; McCabe, T.;
Connon, S. J. Tetrahedron Lett. 2006, 47, 7037−7042.
(4) (a) Lin, J.-H.; Xiao, J.-C. Eur. J. Org. Chem. 2011, 4536−4539.
(b) Hirata, T.; Yamanaka, M. Chem. Asian J. 2011, 6, 510−516.
(5) (a) Guo, F.; Lai, G.; Xiong, S.; Wang, S.; Wang, Z. Chem. Eur. J.
2010, 16, 6438−6441. (b) McKeon, S. C.; Muller-Bunz, H.; Guiry, P.
̈
J. Eur. J. Org. Chem. 2009, 4833−4841. (c) Lin, S.-z.; You, T.-p.
Tetrahedron 2009, 65, 1010−1016. (d) Yuan, Z.-L.; Lei, Z.-Y.; Shi, M.
Tetrahedron: Asymmetry 2008, 19, 1339−1346. (e) Liu, H.; Lu, S.-F.;
C
dx.doi.org/10.1021/om401125q | Organometallics XXXX, XXX, XXX−XXX