´
M. Laura Dantola et al. / Tetrahedron 64 (2008) 8692–8699
8699
P
fl are the factors obtained from the calibration curves for the
Acknowledgements
The present work was partially supported by Consejo Nacional
2
reactant and the product at l1 and l2. Although only two equations
are required for calculating CR and CP, more equations were used in
´
de Investigaciones Cientificas y Tecnicas (CONICET-Grant PIP 6301/
order to check the results obtained.
´
´
´
05), Agencia de Promocion Cientıfica y Tecnologica (ANPCyT Grants
PICT 06-12610 and PICT 33919), and Universidad Nacional de La
Plata (UNLP). M.L.D. and M.V. thank CONICET, and M.P.D. thanks
ANPCyT for graduate research fellowships. C.L., A.L.C. and A.H.T. are
research members of CONICET.
4.4. Determination of the rate constant of the chemical
reaction between H2O2 and dihydropterins
In all experiments the concentration of H2O2 was much higher
than that of the studied dihydropterin ([H2O2]>10[DHPT]). There-
fore, pseudo-first-order conditions for the consumption of
dihydropterins can be assumed and the rate of disappearance of
reactant should be given by the following pseudo-first-order rate
equation:
References and notes
1. Huber, C.; Fuchs, D.; Hausen, A.; Margreiter, R.; Reibnegger, G.; Spielberger, M.;
Wachter, H. J. Immunol. 1983, 130, 1047.
2. Nichol, C. A.; Smith, G. K.; Duch, D. S. Annu. Rev. Biochem. 1985, 54, 729.
3. Lucock, M. Mol. Genet. Metab. 2000, 71, 121.
4. Pfleiderer, W. In Biochemical and Clinical Aspects of Pteridines; Pfleiderer, W.,
Wachter, H., Blair, J. A., Eds.; Walter de Gruyter: Berlin, New York, NY, 1987; Vol.
5, pp 3–21.
5. Da´ntola, M. L.; Thomas, A. H.; Braun, A. M.; Oliveros, E.; Lorente, C. J. Phys. Chem.
A 2007, 111, 4280.
6. Cabrerizo, F. M.; Da´ntola, M. L.; Petroselli, G.; Capparelli, A. L.; Thomas, A. H.;
Braun, A. M.; Lorente, C.; Oliveros, E. Photochem. Photobiol. 2007, 83, 526.
7. Kirsch, M.; Korth, H.-G.; Stenert, V.; Sustmann, R.; De Groot, H. J. Biol. Chem.
2003, 278, 24481.
8. Heales, S. J. R.; Blair, J. A.; Meinschad, C.; Ziegler, I. Cell Biochem. Funct. 1988, 6, 191.
9. Da´ntola, M. L.; Vignoni, M.; Capparelli, A. L.; Lorente, C.; Thomas, A. H. Helv.
Chim. Acta 2008, 91, 411.
ꢂðd½DHPTꢄ=dtÞ ¼ kapp½DHPTꢄ
(3)
Where [DHPT] is the concentration of a given dihydropterin de-
rivative and kapp is the pseudo-first-order rate constant of the
chemical reaction between H2O2 and DHPT. Therefore, integration
of Eq. 3 leads to:
À
Á
ln ½DHPTꢄ=½DHPTꢄ0 ¼ kapp
t
(4)
and first-order kinetics should be observed for the disappearance of
DHPT.
10. Kovacs, S. O. J. Am. Acad. Dermatol. 1998, 38, 647.
11. Schallreuter, K. U.; Wood, J. M.; Pittelkow, M. R.; Gutlich, M.; Lemke, K. R.; Rodl,
W.; Swanson, N. N.; Hitzemann, K.; Ziegler, I. Science 1994, 263, 1444.
12. Schallreuter, K. U.; Moore, J.; Wood, J. M.; Beazley, W. D.; Peters, E. M. J.; Marles,
L. K.; Behrens-Williams, S. C.; Dummer, R.; Blau, N.; Tho¨ny, B. J. J. Invest. Der-
matol. 2001, 116, 167.
13. Schallreuter, K. U.; Moore, J.; Wood, J. M.; Beazley, W. D.; Gazeg, D. C.; Tobin,
D. J.; Marshall, H. S.; Panske, A.; Panzig, E.; Hibberts, N. A. J. Invest. Dermatol.
Symp. Proc. 1999, 4, 91.
For determining kapp
, air-equilibrated aqueous solutions
(pH¼7.1ꢁ0.1) of the dihydropterin derivatives were incubated at
37 ꢀC, using a low temperature bath/circulator R1 (Grant In-
struments) or a thermostat bath D8/17V (MGW Lauda). Consump-
tion of the dihydropterin as a function of time was analyzed by
HPLC (vide supra). kapp was calculated from the slope of the plot
ln([DHPT]/[DHPT]0) versus t.
14. Moore, J.; Wood, J. M.; Schallreuter, K. U. J. Raman Spectrosc. 2002, 33, 610.
15. Murr, C.; Baier-Bitterlich, G.; Fuchs, D.; Werner, E. R.; Esterbauer, H.; Pfleiderer,
W.; Wachter, H. Free Radical Biol. Med. 1996, 21, 449.
If the reaction is of first order for H2O2, the rate of disappearance
of a given dihydropterin derivative is given by Eq. 5,
16. Armarego, W. L. F.; Randles, D.; Taguchi, H. Eur. J. Biochem. 1983, 135, 393.
17. Cabrerizo, F. M.; Petroselli, G.; Lorente, C.; Capparelli, A. L.; Thomas, A. H.;
Braun, A. M.; Oliveros, E. Photochem. Photobiol. 2005, 81, 1234.
18. Gieseg, S. P.; Maghzal, G.; Glubb, D. Free Radical Res. 2001, 34, 123.
19. Gieseg, S. P.; Whybrow, J.; Glubb, D.; Rait, C. Free Radical Res. 2001, 35, 311.
20. Arai, T.; Endo, N.; Yamashita, K.; Sasada, M.; Mori, H.; Ishii, H.; Hirota, K.;
Makino, K.; Fukuda, K. Free Radical Biol. Med. 2001, 30, 248.
21. Petroselli, G.; Bartsch, J. M.; Thomas, A. H. Pteridines 2006, 17, 82.
22. Vignoni, M.; Cabrerizo, F.M.; Lorente, C.; Thomas, A. H., in preparation.
ꢂðd½DHPTꢄ=dtÞ ¼ k½DHPTꢄ½H2O2ꢄ
where k is the bimolecular rate constant of the chemical reaction
between H2O2 and DHPT. Therefore, k can be determined from the
slope of the plot kapp versus [H2O2] (Eq. 6).
(5)
´
23. Thomas, A. H.; Suarez, G.; Cabrerizo, F. M.; Martino, R.; Capparelli, A. L.
J. Photochem. Photobiol., A: Chem. 2000, 135, 147.
24. Sua´rez, G.; Cabrerizo, F. M.; Lorente, C.; Thomas, A. H.; Capparelli, A. L.
J. Photochem. Photobiol., A: Chem. 2000, 132, 53.
kapp ¼ k½H2O2ꢄ
(6)