Paper
Green Chemistry
Organic Transformations, Wiley-VCH, New York, 2nd edn,
1999.
2 (a) O. A. Attanasi, S. Berretta, G. Favi, G. P. Filippone,
G. Mele, G. Moscatelli and R. Saladino, Org. Lett., 2006, 8,
4291–4293; (b) H. Y. Choi and D. Y. Chi, Org. Lett., 2003, 5,
411–414; (c) S. Paul, V. Gupta and R. Gupta, Synth.
Commun., 2003, 33, 1917–1922; (d) J. Goswami and
A. Goswami, J. Indian Chem. Soc., 2002, 79, 469–471;
(e) M. Ghiaci and J. Asghari, Bull. Chem. Soc. Jpn., 2001, 74,
1151–1152; (f) Z. Diwu, C. Beachdel and D. H. Klaubert,
Tetrahedron Lett., 1998, 39, 4987–4990; (g) S. Patai and
Z. Rappoport, The Chemistry of Functional Groups: Sup-
plement D2, The Chemistry of Halides, Pseudo-Halides and
Azides, Part 1 and 2, Wiley, Chichester, 1995; (h) B. Sket and
M. Zupan, Synth. Commun., 1989, 19, 2481–2487.
3 (a) I. Pravst, M. Zupan and S. Stavber, Green Chem., 2006, 8,
1001–1005; (b) H. M. Meshram, P. N. Reddy, P. Vishnu,
K. Sadashiv and J. S. Yadav, Tetrahedron Lett., 2006, 47,
991–995; (c) I. Pravst, M. Zupan and S. Stavber, Tetrahedron
Lett., 2006, 47, 4707–4710; (d) S. K. Guha, B. Wu, B. S. Kim,
W. Baik and S. Koo, Tetrahedron Lett., 2006, 47, 291–293;
(e) B. Das, K. Venkateswarlu, G. Mahender and
I. Mahender, Tetrahedron Lett., 2005, 46, 3041–3044;
(f) K. Tanemura, T. Suzuki, Y. Nishida, K. Satsumabayashi
and T. Horaguchi, Chem. Commun., 2004, 470–471;
(g) D. Yang, Y. L. Yan and B. Lui, J. Org. Chem., 2002, 67,
7429–7431; (h) S. Bertelsen, N. Halland, S. Bachmann,
M. Marigo, A. Braunton and K. A. Jørgensen, Chem.
Commun., 2005, 4821–4823.
Scheme 1 Proposed mechanism.
Conclusions
In summary, a novel way of synthesizing phenacyl bromides
from styrene derivatives was developed. By treating styrene
derivatives with KBr in the presence of K2S2O8 in H2O, the
styrene derivatives were found to undergo hydroxybromination
to produce bromohydrins in situ, which subsequently under-
went oxidation to give a variety of phenacyl bromides in yields
ranging from 21 to 90%. This method is of great value from
the viewpoint of green chemistry and organic synthesis because
of using inexpensive styrenes, non-toxic KBr as the bromine
source, K2S2O8 as oxidant, and H2O as solvent. Work is under-
way toward the further development of relevant reactions.
4 R. D. Patil, G. Joshi and S. Adimurthy, Ind. Eng. Chem. Res.,
2010, 49, 8100–8105.
Experimental
5 T. Nobuta, Sh. Hirashima, N. Tada, T. Miura and A. Itoh,
Synlett, 2010, 2335–2339.
6 J. N. Moorthy, K. Senapati and N. Singhal, Tetrahedron
Lett., 2009, 50, 2493–2496.
7 R. D. Patil, G. Joshi, S. Adimurthy and B. C. Ranu, Tetrahe-
dron Lett., 2009, 50, 2529–2532.
8 T. Moriuchi, M. Yamaguchi, K. Kikushima and T. Hirao,
Tetrahedron Lett., 2007, 48, 2667–2670.
General procedure for the synthesis of phenacyl bromides via
K2S2O8-mediated tandem hydroxybromination and oxidation
of styrenes
To a 25 mL Schlenck tube were added K2S2O8 (2.5 equiv.), KBr
(2.0 equiv.), styrenes (0.5 mmol) and H2O (1 mL). The reaction
mixture was warmed to 60 °C (oil bath) and stirred for 12 h.
The reaction was cooled to room temperature, and dichloro-
methane (DCM) (80 mL) and water (40 mL) were added. The
organic layer was separated, and the aqueous phase was
extracted with DCM (40 mL × 2). The combined organic layers
were dried over anhydrous Na2SO4, filtered, and concentrated.
The residue was purified by column chromatography to give
the desired product.
9 T. Kageyama, Y. Tobito, A. Katoh, Y. Ueno and M. Okawara,
Chem. Lett., 1983, 1481–1482.
10 For selected recent reviews, see: (a) R. N. Butler and A. G.
Coyne, Chem. Rev., 2010, 110, 6302–6337; (b) A. Chanda
and V. V. Fokin, Chem. Rev., 2009, 109, 725–748; (c)
Y. Uozumi and Y. M. A. Yamada, Chem. Rec., 2009, 9,
51–65; (d) M. Raj and V. K. Singh, Chem. Commun.,
2009, 6687–6703; (e) Organic Reactions in Water, ed.
U. M. Lindström, Blackwell, Oxford, 2007; (f) C.-J. Li and
L. Chen, Chem. Soc. Rev., 2006, 35, 68–82.
11 (a) Y. Fujiwara, V. Domingo, I. B. Seiple, R. Gianatassio,
M. D. Bel and P. S. Baran, J. Am. Chem. Soc., 2011, 133,
3292–3295; (b) Z. Yang, X. Chen, S. Wang, J. Liu, K. Xie,
A. Wang and Z. Tan, J. Org. Chem., 2012, 77, 7086–7091;
(c) I. B. Seiple, S. Su, R. A. Rodriguez, R. Gianatassio,
Y. Fujiwara, A. L. Sobel and P. S. Baran, J. Am. Chem. Soc.,
2010, 132, 13194–13196; (d) J. W. Lockner, D. D. Dixon,
Acknowledgements
We are grateful for the financial support from the National
Natural Science Foundation of China (J1210040, J1103312).
Notes and references
1 (a) K. Takami, S.-I. Usugi, H. Yorimitsu and K. Oshima,
Synthesis, 2005, 824–839; (b) R. C. Larock, Comprehensive
Green Chem.
This journal is © The Royal Society of Chemistry 2013