Magnetite (Fe3O4) Nanoparticles-Catalyzed Sonogashira–Hagihara Reactions
1h: 1H NMR (250 MHz, CDCl3): d=7.42–7.45 (m, 2H),
6.91–7.27 (m, 6H); 13C NMR (62.9 MHz, CDCl3): d=132.8,
131.7, 129.9, 129.3, 128.7, 128.5, 125.5, 123.3, 89.1, 84.7.
1i: 1H NMR (250 MHz, CDCl3): d=8.37–8.34 (m, 2H),
7.75–7.25 (m, 10H); 13C NMR (62.9 MHz, CDCl3): d=133.2,
131.7, 130.4, 129.1, 128.6, 128.4, 128.3, 128.0, 126.8, 126.4,
126.2, 125.3, 123.4, 120.9, 94.4, 87.6.
2003, 44, 5011–5013; e) N. E. Leadbeater, M. Marco, J.
Org. Chem. 2003, 68, 5660–5667; f) R. K. Arvela, N. E.
Leadbeater, J. Org. Chem. 2005, 70, 1786–1790;
g) R. K. Arvela, N. E. Leadbeater, M. S. Sangi, V. A.
Williams, P. Granados, R. D. Singer, J. Org. Chem.
2005, 70, 162–168; h) N. E. Leadbeater, M. Marco, B. J.
Tominack, Org. Lett. 2003, 5, 3919–3922; i) P. Appuk-
kuttan, W. Dehaen, E. Van der Eycken, Eur. J. Org.
Chem. 2003, 4713–4716; j) N. E. Leadbeater, M.
Marco, Angew. Chem. 2003, 115, 1445–1447; Angew.
Chem. Int. Ed. 2003, 42, 1407–1409.
1j: 1H NMR (250 MHz, CDCl3): d=7.48–7.41 (m, 2H),
7.28–7.15 (m, 7H); 13C NMR (62.9 MHz, CDCl3): d=140.2,
131.8, 131.5, 129.5, 128.4, 128.3, 128.2 125.6, 123.5, 123.0,
93.4, 88.4, 20.8.
1k: 1H NMR (300 MHz, CDCl3): d=7.60–7.51 (m, 2H),
7.40–7.28 (m, 5H), 6.99–6.92 (m, 2H), 3.94 (s, 3H).
1l: 1H NMR (250 MHz, CDCl3): d=7.60–7.23 (7H, m),
6.74–6.71 (m, 2H), 5.20 (s, 1H).
[3] a) Handbook on the Toxicology of Metals, (Eds.: L. Fri-
berg, G. F. Nordberg, V. B. Vouk), Elsevier, Amster-
dam, 1986; b) M. N. Hughes, Compr. Coord. Chem.
1987, 6, 643–648; c) Nickel and the Skin: Absorption,
Immunology, Epidemiology, and Metallurgy, (Eds.: J. J.
Hostynek, H. I. Maibach), CRC, Boca Raton, FL, 2002.
[4] For reviews on iron catalysis: a) A. Fꢃrstner, R.
Martin, Chem. Lett. 2005, 34, 624–629; b) A. A. O.
Sarhan, C. Bolm, Chem. Soc. Rev. 2009, 38, 2730–2744;
c) S. Enthaler, K. Junge, M. Beller, Angew. Chem.
2008, 120, 3363–3367; Angew. Chem. Int. Ed. 2008, 47,
3317–3321; d) S. Gaillard, J.-L. Renaud, ChemSus-
1
1m: H NMR (250 MHz, CDCl3): d=8.69 (s, 1H), 8.46–
8.47 (m, 1H), 7.71–7.74 (m, 1H), 7.45–7.51 (m, 2H), 7.31–
7.28 (m, 4H).
1
1n: H NMR (250 MHz, CDCl3): d=9.05 (s, 1H), 8.76 (s,
2H), 7.31–7.26 (m, 3H), 7.48–7.42 (m, 2H); 13C NMR
(62.9 MHz, CDCl3): d=158.5, 156.6, 131.2, 129.3, 128.5,
122.6, 119.8, 96.3, 82.3.
1o: 1H NMR (400 MHz, CDCl3): d=7.46–7.43 (m, 2H),
7.18–7.16 (m, 2H), 2.39 (s, 6H); 13C NMR (100 MHz,
CDCl3): d=138.1, 131.4, 129.0, 120.4, 88.8, 21.4.
AHCTUNGTREGUNCNN hem 2008, 1, 505–509; e) A. Fꢃrstner, R. Martin,
Chem. Lett. 2005, 34, 624–629; f) C. Bolm, J. Legros, J.
Le Paih, L. Zani, Chem. Rev. 2004, 104, 6217–6254.
[5] a) S. Gaillard, J.-L. Renaud, ChemSusChem 2008, 1,
505–509; b) S. Enthaler, B. Hagemann, G. Erre, K.
Junge, M. Beller, Chem. Asian J. 2006, 1, 598–604;
c) S. C. Bart, E. Lobkovsky, P. J. Chirik, J. Am. Chem.
Soc. 2004, 126, 13794–13807.
[6] a) F. Shi, M. K. Tse, Z. Li, M. Beller, Chem. Eur. J.
2008, 14, 8793–8797; b) M. Nakanishi, C. Bolm, Adv.
Synth. Catal. 2007, 349, 861–864; c) C. Pavan, J.
Legros, C. Bolm, Adv. Synth. Catal. 2005, 347, 703–
705; d) J. Legros, C. Bolm, Chem. Eur. J. 2005, 11,
1086–1092; e) J. Legros, C. Bolm, Angew. Chem. 2004,
116, 4321–4324; Angew. Chem. Int. Ed. 2004, 43, 4225–
4228; f) J. Legros, C. Bolm, Angew. Chem. 2003, 115,
5645–5647; Angew. Chem. Int. Ed. 2003, 42, 5487–
5489; g) Z. Li, L. Cao, C.-J. Li, Angew. Chem. 2007,
119, 6625–6627; Angew. Chem. Int. Ed. 2007, 46, 6505–
6507; h) Z. Li, R. Yu, H. Li, Angew. Chem. 2008, 120,
7607–7610; Angew. Chem. Int. Ed. 2008, 47, 7497–
7500.
[7] a) B. Bitterlich, K. Schroeder, M. K. Tse, M. Beller,
Eur. J. Org. Chem. 2008, 29, 4867–4870; b) F. G. Gelal-
cha, G. Anilkumar, M. K. Tse, A. Brꢃckner, M. Beller,
Chem. Eur. J. 2008, 14, 7687–7698; c) F. G. Gelalcha,
B. Bitterlich, G. Anilkumar, M. K. Tse, M. Beller,
Angew. Chem. 2007, 119, 7431–7435; Angew. Chem.
Int. Ed. 2007, 46, 7293–7296; d) K. Schroeder, X. Tong,
B. Bitterlich, M. K. Tse, F. G. Gelalcha, A. Brueckner,
M. Beller, Tetrahedron Lett. 2007, 48, 6339–6342; e) B.
Bitterlich, G. Anilkumar, F. G. Gelalcha, B. Spilker, A.
Grotevendt, R. Jackstell, M. K. Tse, M. Beller, Chem.
Asian J. 2007, 2, 521–529; f) G. Anilkumar, B. Bitter-
lich, F. G. Gelalcha, M. K. Tse, M. Beller, Chem.
Commun. 2007, 289–291.
1p: 1H NMR (300 MHz, CDCl3): d=7.46–7.41 (m, 2H),
7.35–7.28 (m, 3H), 2.47–2.42 (m, 2H), 1.67–1.34 (m, 6H),
0.98–0.93 (m, 3H); 13C NMR (75 MHz, CDCl3): d=131.5,
128.1, 127.4, 124.0, 90.4, 80.5, 31.3, 28.7, 28.6, 22.5, 19.4, 14.0.
1q: 1H NMR (300 MHz, CDCl3): d=7.35–7.28 (m, 2H),
7.14–7.04 (m, 2H), 2.50–2.31ACTHNUGRTNEUNG(m, 5H), 1.64–1.34 (m, 8H),
0.98–0.93 (m, 3H); 13C NMR (75 MHz, CDCl3): d=137.3,
131.4, 128.9, 121.0, 89.6, 80.6, 31.4, 28.8, 28, 6, 22.6, 21.3,
19.4, 14.0.
1r:1H NMR (300 MHz, CDCl3): d=8.42–8.39 (m, 1H),
7.89–7.41 (m, 6H), 2.64–2.59 (m, 2H), 1.78–1.38 (m, 8H),
0.99–0.95 (m, 3H); 13C NMR (75 MHz, CDCl3): d=133.5,
133.2, 129.9, 128.2, 127.8, 126.4, 126.3, 126.2, 125.2, 121.8,
95.6, 78.6, 31.4, 28.9, 28.7, 22.6, 19.7, 14.1.
Acknowledgements
We gratefully acknowledge financial support of this work by
the Shiraz University Research Council. M.G. is thankful to
Professor Miguel Yus and Professor Rafael Chinchilla for
their helpful discussions and he also appreciates technical
help by Haythem Karim Dema.
References
[1] a) P. W. Davies, Annu. Rep. R. Soc. Chem. Sect. B. Org.
Chem. 2009, 105, 93–112; b) B. C. G. Soderberg,
Coord. Chem. Rev. 2003, 241, 147–247.
[2] a) E. Negishi, Handbook of Organopalladium Chemis-
try for Organic Synthesis, Wiley-Intersience, New York,
2002; b) V. B. Phapale, D. J. Cꢂrdenas, Chem. Soc. Rev.
2009, 38, 1598–1607; c) S. Gu, W. Chen, Organometal-
lics 2009, 28, 909–914; d) I. P. Beletskaya, G. V. Laty-
shev, A. V Tsvetkov, N. V Lukashev, Tetrahedron Lett.
[8] a) B. D. Sherry, A. Fꢃrstner, Chem. Commun. 2009,
7116–7118; b) A. Fꢃrstner, Angew. Chem. 2009, 121,
1390–1393; Angew. Chem. Int. Ed. 2009, 48, 1364–
Adv. Synth. Catal. 2011, 353, 125 – 132
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
131