Organometallics
Communication
ASSOCIATED CONTENT
* Supporting Information
■
S
Text, figures, a table, and CIF and XYZ files giving details of the
preparations and spectral and XRD data for new compounds
and computational data for computed structures. The
Supporting Information is available free of charge on the
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by MEXT KAKENHI Grant Number
24109004 (T.I.) (Grant-in-Aid for Scientific Research on
Innovative Areas “Stimuli-responsive Chemical Species”),
JSPS KAKENHI Grant Numbers 25708004 (S.I.) and
25620020 (S.I.), a Grant-in-Aid for JSPS Fellows (F.H.), and
the Cooperative Research Program of the “Network Joint
Research Center for Materials and Devices”. We thank an
anonymous reviewer for helpful suggestions.
Figure 1. ORTEP drawings of (a) [K(18-c-6)]+1− and (b) 2. Thermal
ellipsoids are shown at the 50% probability level. Hydrogen atoms are
omitted for clarity.
REFERENCES
■
(1) For recent reviews of phosphorus-centered radicals in organic
synthesis and carbene-stabilized main group radicals, see: (a) Leca, D.;
̂
Fensterbank, L.; Lacote, E.; Malacria, M. Chem. Soc. Rev. 2005, 34,
858−865. (b) Martin, C. D.; Soleilhavoup, M.; Bertrand, G. Chem. Sci.
2013, 4, 3020−3030.
of reported monomeric potassium phosphides (3.2198(10)−
3.4822(9) Å).7 The electropositive potassium atom of the
phosphide [K(18-c-6)]+1− increases the p character of its
nonbonding electron pair orbital; the sum of the bond angles
around the phosphorus atom is 344.16(9)°, which is larger than
(2) For selected examples of persistent phosphinyl radicals in recent
years, see: (a) Hinchley, S. L.; Morrison, C. A.; Rankin, D. W. H.;
Macdonald, C. L. B.; Wiacek, R. J.; Voigt, A.; Cowley, A. H.; Lappert,
M. F.; Gundersen, G.; Clyburne, J. A. C.; Power, P. P. J. Am. Chem.
Soc. 2001, 123, 9045−9053. (b) Bezombes, J.-P.; Borisenko, K. B.;
Hitchcock, P. B.; Lappert, M. F.; Nycz, J. E.; Rankin, D. W. H.;
Robertson, H. E. Dalton Trans. 2004, 1980−1988. (c) Dumitrescu, A.;
Rudzevich, V. L.; Romanenko, V. D.; Mari, A.; Schoeller, W. W.;
Bourissou, D.; Bertrand, G. Inorg. Chem. 2004, 43, 6546−6548.
(d) Giffin, N. A.; Hendsbee, A. D.; Roemmele, T. L.; Lumsden, M. D.;
Pye, C. C.; Masuda, J. D. Inorg. Chem. 2012, 51, 11837−11850.
(3) For stable phosphinyl radicals, see: (a) Agarwal, P.; Piro, N. A.;
those of RH PCl (304.76(9)°).5
2
Reaction of 1 with 1.5 equiv of AgOTf in C6H6 at room
temperature afforded the phosphaalkene silver(I) complex 2
and Me3SiOTf in 92% and 90% yields with the precipitation of
silver, instead of the expected phosphenium cation RH P+.
2
Reaction of 1 with 1 equiv of AgOTf gave 2 and unreacted 1.
The molecular structure of 2 determined by XRD analysis is
shown in Figure 1b. The silver atom adopts a planar three-
coordinated geometry with two cyclic phosphaalkenes and one
OTf ligand: the sum of the bond angles around the Ag atom is
360.0(1)°.8
Meyer, K.; Muller, P.; Cummins, C. C. Angew. Chem., Int. Ed. 2007, 46,
̈
3111−3114. (b) Back, O.; Celik, M. A.; Frenking, G.; Melaimi, M.;
Donnadieu, B.; Bertrand, G. J. Am. Chem. Soc. 2010, 132, 10262−
10263. (c) Back, O.; Donnadieu, B.; von Hopffgarten, M.; Klein, S.;
Tonner, R.; Frenking, G.; Bertrand, G. Chem. Sci. 2011, 2, 858−861.
(4) (a) Buttner, T.; Geier, J.; Frison, G.; Harmer, J.; Calle, C.;
̈
The formation of the silver complex 2 can be explained by
the following mechanism. Initial formation of phosphinosulfo-
Schweiger, A.; Schonberg, H.; Grutzmacher, H. Science 2005, 307,
̈
̈
nate RH POTf (4) by the oxidation of phosphinyl radical 1 with
235−239. (b) Maire, P.; Konigsmann, M.; Sreekanth, A.; Harmer, J.;
Schweiger, A.; Grutzmacher, H. J. Am. Chem. Soc. 2006, 128, 6578−
̈
2
̈
AgOTf and the subsequent elimination of trimethylsilyl triflate
from 4 provide 3. Coordination of the resulting phosphaalkene
3 to 1/2 equiv of AgOTf provides 2.9,10 Reactions of (1)
6580. (c) Miyazato, Y.; Wada, T.; Muckerman, J. T.; Fujita, E.; Tanaka,
K. Angew. Chem., Int. Ed. 2007, 46, 5728−5730. (d) Mankad, N. P.;
Antholine, W. E.; Szilagyi, R. K.; Peters, J. C. J. Am. Chem. Soc. 2009,
131, 3878−3880.
phosphaalkene 3 with AgOTf, giving 2, and (2) RH PCl with
2
AgOTf, giving 3, support the aforementioned mechanism.11
In conclusion, we disclosed the redox behavior of the isolable
phosphinyl radical 1. Radical 1 shows oxidation and reduction
irreversible waves at −0.24 and −2.29 V. Corresponding to the
observed electrochemical redox behavior, reduction of 1 with
KC8 gave the phosphides [K(18-c-6)]+1− and [K(crypt-
222)]+1−, and oxidation of 1 with AgOTf afforded an
unexpected product, phosphaalkene silver(I) complex 2.
(5) (a) Ishida, S.; Hirakawa, F.; Iwamoto, T. J. Am. Chem. Soc. 2011,
133, 12968−12971. (b) Iwamoto, T.; Hirakawa, F.; Ishida, S. Angew.
Chem., Int. Ed. 2012, 51, 12111−12114. (c) Ishida, S.; Hirakawa, F.;
Iwamoto, T. Chem. Lett. 2015, 44, 94−96.
(6) The 31P resonances due to anionic phosphorus of [K(18-c-6)]+1−
and [K(crypt-222)]+1− in benzene-d6 appear at −35.8 and −31.4 ppm,
respectively.
(7) (a) Clegg, W.; Doherty, S.; Izod, K.; Kagerer, H.; O’Shaughnessy,
P.; Sheffield, J. M. J. Chem. Soc., Dalton Trans. 1999, 1825−1830.
2715
Organometallics 2015, 34, 2714−2716