10.1002/anie.201808551
Angewandte Chemie International Edition
COMMUNICATION
Conflict of interest
The authors declare no conflict of interest.
Keywords: antimony • Lewis acids • -hole • transfer
hydrogenation • molecular recognition
[1]
a) N. L. Dunn, M. Ha, A. T. Radosevich, J. Am. Chem. Soc. 2012, 134,
11330-11333; b) J. Cui, Y. Li, R. Ganguly, A. Inthirarajah, H. Hirao, R.
Kinjo, J. Am. Chem. Soc. 2014, 136, 16764-16767; c) M. Perez, C. B.
Caputo, R. Dobrovetsky, D. W. Stephan, Proc. Natl. Acad. Sci. U.S.A.
2014, 111, 10917-10921; d) M. H. Holthausen, J. M. Bayne, I. Mallov, R.
Dobrovetsky, D. W. Stephan, J. Am. Chem. Soc. 2015, 137, 7298-
7301; e) M. Perez, Z.-W. Qu, C. B. Caputo, V. Podgorny, L. J. Hounjet,
A. Hansen, R. Dobrovetsky, S. Grimme, D. W. Stephan, Chem. Eur. J
2015, 21, 6491-6500; f) K. D. Reichl, N. L. Dunn, N. J. Fastuca, A. T.
Radosevich, J. Am. Chem. Soc. 2015, 137, 5292-5295; g) W. Zhao, P.
K. Yan, A. T. Radosevich, J. Am. Chem. Soc. 2015, 137, 616-619; h) M.
R. Adams, C. H. Tien, R. McDonald, A. W. H. Speed, Angew. Chem. Int.
Ed. 2017, 56, 16660-16663; Angew. Chem. 2017, 129, 16887-16890; i)
G. Micheal, F. C. M., S. S. H., B. Johannes, N. Martin, G. Dietrich,
Chem. Eur. J. 2017, 23, 11560-11569; j) D. W. Stephan, Angew. Chem.
Int. Ed. 2017, 56, 5984-5992; Angew. Chem. 2017, 129, 6078-6086; k)
T. Hynes, E. N. Welsh, R. McDonald, M. J. Ferguson, A. W. H. Speed,
Organometallics 2018, 37, 841-844; l) B. Rao, C. C. Chong, R. Kinjo, J.
Am. Chem. Soc. 2018, 140, 652-656.
The results presented herein show that the Lewis acidity of
pnictogen bond donor based on organoantimony is notably
enhanced by oxidation to the +V state, a conclusion that
parallels that drawn in the case of iodine(III) halogen bond
donors.[22] Our analyses indicate that this Lewis acidity increase
originates from a lowering of the antimony centered * orbital as
well as a deepening of the -hole. These two effects, which
respectively capture the covalent and electrostatic nature of the
interaction formed between the antimony Lewis acid and the
incoming Lewis base, are manifested in the binding constants
obtained when these organoantimony compounds complex with
Ph3PO. The same effects also readily enhance their catalytic
properties in transfer hydrogenation and Ritter-like reactions
when the antimony is in the +V state. Finally, the work described
herein illustrates the duality that connects the orbital-based and
-hole-based descriptors of Lewis acidity in a way that mirrors
the continuum existing between covalent and ionic bonding
extremes.
[2]
[3]
a) A. P. M. Robertson, N. Burford, R. McDonald, M. J. Ferguson,
Angew. Chem. Int. Ed. 2014, 53, 3480-3483; Angew. Chem. 2014, 126,
3548-3551; b) A. P. M. Robertson, S. S. Chitnis, H. A. Jenkins, R.
McDonald, M. J. Ferguson, N. Burford, Chem. Eur. J. 2015, 21, 7902-
7913; c) S. S. Chitnis, A. P. M. Robertson, N. Burford, B. O. Patrick, R.
McDonald, M. J. Ferguson, Chem. Sci. 2015, 6, 6545-6555.
a) B. Pan, F. P. Gabbaï, J. Am. Chem. Soc. 2014, 136, 9564-9567; b)
N. Li, R. Qiu, X. Zhang, Y. Chen, S.-F. Yin, X. Xu, Tetrahedron 2015,
71, 4275-4281; c) D. Tofan, F. P. Gabbaï, Chem. Sci. 2016, 7, 6768-
6778; d) R. Arias-Ugarte, D. Devarajan, R. M. Mushinski, T. W. Hudnall,
Dalton Trans. 2016, 45, 11150-11161; e) M. Hirai, J. Cho, F. P. Gabbaï,
Chem. Eur. J. 2016, 22, 6537-6541; f) R. Arias-Ugarte, T. W. Hudnall,
Green Chemistry 2017, 19, 1990-1998; g) S. S. Chitnis, H. A. Sparkes,
V. T. Annibale, N. E. Pridmore, A. M. Oliver, I. Manners, Angew. Chem.
Int. Ed. 2017, 56, 9536-9540; Angew. Chem. 2017, 129, 9664-9668; h)
M. Yang, F. P. Gabbaï, Inorg. Chem. 2017, 56, 8644-8650; i) M. Yang,
N. Pati, G. Belanger-Chabot, M. Hirai, F. P. Gabbai, Dalton Trans. 2018.
a) I.-S. Ke, J. S. Jones, F. P. Gabbaï, Angew. Chem. Int. Ed. 2014, 53,
2633-2637; Angew. Chem. 2014, 126, 2671-2675; b) M. Hirai, F. P.
Gabbaï, Chem. Sci. 2014, 5, 1886-1893; c) M. Hirai, F. P. Gabbaï,
Angew. Chem. Int. Ed. 2015, 54, 1205-1209; Angew. Chem. 2015, 127,
1221–1225; d) M. Hirai, M. Myahkostupov, F. N. Castellano, F. P.
Gabbaï, Organometallics 2016, 35, 1854-1860; e) J. S. Jones, F. P.
Gabbaï, Acc. Chem. Res. 2016, 49, 857-867; f) A. M. Christianson, F. P.
Gabbaï, Chem. Commun. 2017, 53, 2471-2474; g) C.-H. Chen, F. P.
Gabbaï, Angew. Chem. Int. Ed. 2017, 56, 1799-1804; Angew. Chem.
2017, 129, 1825-1830; h) A. Kumar, M. Yang, M. Kim, F. P. Gabbaï, M.
H. Lee, Organometallics 2017, 36, 4901-4907; i) A. M. Christianson, E.
Rivard, F. P. Gabbaï, Organometallics 2017, 36, 2670-2676; j) J. S.
Jones, C. R. Wade, M. Yang, F. P. Gabbaï, Dalton Trans. 2017, 46,
5598-5604.
[4]
Experimental Section
The experimental procedures are provided in the Supplemental
Information.
Acknowledgements
Acknowledgment is made to the Donors of the American
Chemical Society Petroleum Research Fund for partial support
of this research (Grant 56871-ND3). We also acknowledge
support from the Welch Foundation (Grant A-1423) and Texas
A&M University (Arthur E. Martell Chair of Chemistry and
Laboratory for Molecular Simulation). We thank Dr. J. Stuart
Jones, Dr. Masato Hirai, Nilanjana Pati, and Mazarine Laurent
for their constructive input to the chemistry.
[5]
a) K. Ohkata, S. Takemoto, M. Ohnishi, K.-Y. Akiba, Tetrahedron Lett.
1989, 30, 4841-4844; b) C. J. Carmalt, A. H. Cowley, R. D. Culp, R. A.
Jones, S. Kamepalli, N. C. Norman, Inorg. Chem. 1997, 36, 2770-2776.
J. Qiu, B. Song, X. Li, A. F. Cozzolino, PCCP 2018, 20, 46-50.
[6]
[7]
[8]
[9]
A. M. Christianson, F. P. Gabbaï, Organometallics 2017, 36, 3013-3015.
̈
H. Yang, F. P. Gabbaı, J. Am. Chem. Soc. 2015, 137, 13425-13432.
J. S. Jones, F. P. Gabbaï, Chem. Eur. J. 2017, 23, 1136-1144.
[10] S. Benz, A. I. Poblador-Bahamonde, N. Low-Ders, S. Matile, Angew.
Chem. Int. Ed. 2018, 57, 5408-5412; Angew. Chem. 2018, 130, 5506-
5510.
This article is protected by copyright. All rights reserved.