Inorganic Chemistry
Article
no significant change takes place at low temperatures (Figure
S12 in the Supporting Information); hence any dynamic Jahn−
Teller effect can be ruled out. Therefore, we believe that our
spectra can be attributed to g being an exchange cooperative
tensor (G = 2.59)24 instead of a molecular one, and therefore,
that long-range, extremely weak magnetic interactions are
present in both 2 and 2a. It is known that rhombic signals are
obtained when cooperative g tensors refer to interacting CuII
polyhedra with different orientations in the unit cell.25
Moreover, long-range, weak magnetic interactions between
distant CuII atoms have been found to have a clear effect in the
EPR spectra. For example, this is the case of [Cu(py)2Cl2],
where CuII atoms separated by ca. 9 Å and connected by
sequences of six consecutive bonds and interactions were found
to be coupled on the basis of EPR spectroscopy.26
CuII/N2Py2 complexes (Table S2); C−H···O interactions for
1/1a and 2/2a (Tables S3 and S4); and spin Hamiltonian
parameters (Table S5). Crystallographic data in CIF format for
1, 2, 1a, 2a, and rehydrated 1. This material is available free of
AUTHOR INFORMATION
Corresponding Author
■
Funding
Eusko Jaurlaritza/Gobierno Vasco (EJ/GV) and Universidad
́
del Pais Vasco UPV/EHU.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
CONCLUSIONS
■
■
This work has been funded by EJ/GV through the Program to
Support the Research Groups of the Basque University System
(grant IT477-10) and the SAIOTEK Program (grant S-
PE11UN062). The authors thank UPV/EHU for financial
support (grant UFI11/53). A.I. and B.A. are indebted to EJ/GV
for their predoctoral fellowships. Technical and human support
provided by SGIker (UPV/EHU) is gratefully acknowledged.
Two new hybrid compounds based on Keggin anions and CuII
complexes of N2Py2 tetradentate ligands have been hydro-
thermally prepared, [Cu(bpmen)(H2O)][SiW12O40{Cu-
(bpmen)}] (1) and [SiW12O40{Cu(bpmpn)(H2O)}2]·3H2O
(2) (bpmen, N,N′-dimethyl-N,N′-bis-(pyridin-2-ylmethyl)-1,2-
diaminoethane; bpmpn, N,N′-dimethyl-N,N′-bis(pyridin-2-yl-
methyl)-1,3-diaminopropane). The structure of 1 shows
complex cations enclosed between rows of monodecorated
POMs, whereas the trans-didecorated species of 2 forms
stacked honeycomb-like metal−organic layers with Keggin
clusters accommodated in channels. Structural differences relate
to changes in the complex geometry (square-pyramidal vs.
octahedral) and ligand conformation (cis vs. trans) when going
from bpmen to bpmpn.
REFERENCES
■
(1) (a) Pope, M. T. Heteropoly and Isopoly Oxometalates; Springer:
Berlin, Germany, 1983. (b) Hill, C. L. Chem. Rev. 1998, 98 (1),
thematic issue. (c) Polyoxometalates: From Platonic Solids to Anti-
Retroviral Activity; Pope, M. T., Muller, A., Eds.; Kluwer: Dordrecht,
The Netherlands, 1994. (d) Polyoxometalate Chemistry: From Topology
̈
via Self-Assembly to Applications; Pope, M. T., Muller, A., Eds.; Kluwer:
̈
This work represents a nice example of how functionalization
of POMs with transition metal complexes can endow the POM
system with interesting features. In our case, the choice of CuII/
N2Py2 moieties has resulted in two hybrid compounds showing
structural response to thermal stimuli regardless of the exact
nature of the ligand. Both compounds undergo single-crystal to
single-crystal transformations promoted by dehydration pro-
cesses that have been followed by powder and single-crystal X-
ray diffraction, allowing for the structures of the high-
temperature, anhydrous phases 1a and 2a to be determined.
Dehydration and consequent structural transformations are
fully reversible without collapse of the crystallinity despite the
fact that they involve variations in the CuII−O bonding,
coordination geometries, and ligand conformation. Release of
the apical water molecule from the complex cation, followed by
coordination to a contiguous POM, leads to the formation of
cis-didecorated neutral species in 1a, whereas the packing of 2a
is maintained owing to a new network of C−H···OPOM
interactions arising from overall compression. The effect of
these structural changes is reflected in the EPR spectra.
Dordrecht, The Netherlands, 2001. (e) Polyoxometalate Chemistry for
Nano-Composite Design; Yamase, T., Pope, M. T., Eds.; Kluwer: New
York, 2002. (f) Kortz, U., Ed. Eur. J. Inorg. Chem. 2009, 2009 (34),
thematic issue. (g) Long, D.-L.; Cronin, L. Dalton Trans. 2012, 33
(41), thematic issue. (h) Cronin, L.; Muller, A., Eds. Chem. Soc. Rev.
2012, 41 (22), thematic issue.
(2) Dolbecq, A.; Dumas, E.; Mayer, C. R.; Mialane, P. Chem. Rev.
2010, 110, 6009.
́
(3) (a) Gomez-Romero, P. Adv. Mater. 2001, 13, 163. (b) Long, D.-
L.; Tsunashima, R.; Cronin, L. Angew. Chem., Int. Ed. 2010, 49, 1736.
(4) (a) Cao, R.; Liu, S.; Cao, J.; Wang, L.; Tang, Q.; Liu, Y.; Ren, Y. J.
̈
Mol. Struct. 2008, 888, 307. (b) Chubarova, E. V.; Klock, C.; Dickman,
M. H.; Kortz, U. J. Cluster Sci. 2007, 18, 697. (c) Klistincova,
̈
́
L.;
Rakovsky, E.; Schwendt, P. Inorg. Chem. Commun. 2008, 11, 1140.
́
(d) Wang, T.; Peng, J.; Liu, H.; Zhu, D.; Tian, A.; Wang, L. J. Mol.
Struct. 2008, 892, 268. (e) An, H.; Xu, T.; Wang, E.; Meng, C. Inorg.
Chem. Commun. 2007, 10, 1453. (f) An, H.-Y.; Wang, E.-B.; Xiao, D.-
R.; Li, Y.-G.; Su, Z.-M.; Xu, L. Angew. Chem., Int. Ed. 2006, 45, 904.
(5) See, for example: (a) Henkel, G.; Krebs, B. Chem. Rev. 2004,
́
104, 801. (b) Kim, E.; Chufan, E. E.; Kamaraj, K.; Karlin, K. D. Chem.
Rev. 2004, 104, 1077. (c) Nakamura, E.; Mori, S. Angew. Chem., Int. Ed.
2000, 39, 3750. (d) Thomas, A. W.; Ley, S. V. Angew. Chem., Int. Ed.
2003, 42, 5400. (e) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem.
Rev. 2004, 248, 2337. (f) Pintauer, T.; Matyjaszewski, K. Coord. Chem.
Rev. 2005, 249, 1155.
ASSOCIATED CONTENT
* Supporting Information
■
S
1H NMR spectra (Figure S1) and synthetic scheme (Figure S3)
for bpmen and bpmpn; PXRD diffractograms of 2, other
precipitates, and TGA residues (Figures S2 and S7); IR and
Raman spectra (Figures S4 and S5); TGA/DTA curves (Figure
S6); CuII/N2Py2 isomers (Figure S8); POM-aromatic inter-
actions in 1/1a (Figure S9); additional structural figures for 2/
2a (Figures S10 and S11); X-band EPR spectra of 2/2a
(Figures S12 and S14) and 1/1a (Figure S13); ranges of W−O
bond lengths (Table S1); selected bond lengths and angles for
(6) (a) Reinoso, S.; Vitoria, P.; Lezama, L.; Luque, A.; Gutier
Zorrilla, J. M. Inorg. Chem. 2003, 42, 3709. (b) San Felices, L.; Vitoria,
P.; Gutierrez-Zorrilla, J. M.; Reinoso, S.; Etxebarria, J.; Lezama, L.
Chem.Eur. J. 2004, 10, 5138. (c) Reinoso, S.; Vitoria, P.; San Felices,
L.; Lezama, L.; Gutier
rez-Zorrilla, J. M. Chem.Eur. J. 2005, 11, 1538.
(d) Reinoso, S.; Vitoria, P.; Gutierrez-Zorrilla, J. M.; Lezama, L.; San
Felices, L.; Beitia, J. I. Inorg. Chem. 2005, 44, 9731. (e) Reinoso, S.;
Vitoria, P.; San Felices, L.; Lezama, L.; Gutierrez-Zorrilla, J. M. Inorg.
Chem. 2006, 45, 108. (f) Reinoso, S.; Vitoria, P.; Gutierrez-Zorrilla, J.
́
rez-
́
́
́
́
́
M.; Lezama, L.; Madariaga, J. M.; San Felices, L.; Iturrospe, A. Inorg.
3092
dx.doi.org/10.1021/ic302499f | Inorg. Chem. 2013, 52, 3084−3093