Communication
Dalton Transactions
stoichiometry [Cu8L4Cl16]·CHCl3·7MeOH·5H2O. The IR spec- for assistance in simulating these data. We thank
trum confirms the presence of amide N–H bonds, and two Prof. M. Murugesu (University of Ottawa) for magnetic data.
amide CvO stretches at 1694 and 1640 cm−1 can be assigned This work was financially supported by NSERC-DG, CFI, CRC,
to the uncoordinated and Cu2+-coordinated amide carbonyl Ministry of Ontario (ERA) and Brock University.
groups respectively. FAB mass spectrometry of the cluster
exhibited only fragmentation peaks; however, several of these
were multi-metallic, suggesting that the cluster remains at
least partially intact in solution.
Notes and references
The UV-Vis spectrum of 1 in DCM–MeOH† displays a
maximum at λ = 261 nm (ε = 81 000 M−1 cm−1) consistent with
π to π* transitions of the bipyridine ligands; a broad absorp-
tion band at λ = 797 nm (ε = 854 M−1 cm−1) is assigned to d–d
transitions. Five-coordinate copper complexes typically show
d–d absorptions in the range 588–769 nm when possessing a
square pyramidal geometry, while trigonal bipyramidal com-
plexes show absorption bands at longer wavelengths, typically
685–952 nm.12 The EPR spectrum of 1 in frozen methanol
solution at 77 K† revealed a near axial spectrum (g1 = 2.224,
g2 = 2.065 and g3 = 2.035). Whilst the high-field component
revealed some evidence for hyperfine coupling, the features
were not well resolved. Conversely the low-field features
revealed a coupling of ca. 80 G consistent with hyperfine coup-
ling to copper (both 63Cu and 65Cu have I = 3/2). The g-values
give R = 0.1875 [according to the calculation R = (g2 − g1)/(g3 −
g2)],12a reflecting a predominantly dx2–y2 ground state; this is
consistent with a movement from trigonal bipyramidal coordi-
nation towards square pyramidal geometry around the Cu(II)
centres in MeOH solution. The magnetism of the Cu8 cluster
was examined in the temperature range 300–1.8 K. Magnetic
susceptibility data reveal 1 obeys the Curie–Weiss law with C =
3.59 cm3 K mol−1 and θ = −0.74 K. The Curie constant is close
to the value of 3.31 cm3 K mol−1 expected for eight indepen-
dent Cu(II) ions (S = 1/2, g = 2.1) with the negative Weiss con-
stant indicating the presence of very weak antiferromagnetic
interactions consistent with the absence of an efficient
through-bond super-exchange pathway. The field dependence
of the magnetisation at 1.8 K revealed a saturation magnetisa-
tion at 7 T of 7.61 μB, slightly lower than the value of 8.4 μB
expected for eight S = 1/2 ions with g = 2.1. [A discussion of the
dipolar intra- and inter-cluster exchange and magnetic model-
ling as a ring of eight S = 1/2 ions is available as ESI.†]
1 (a) I. Huc, M. J. Krische, D. P. Funeriu and J.-M. Lehn,
Eur. J. Inorg. Chem., 1999, 1415; (b) M. Mazik, H. Bandmann
and W. Sicking, Angew. Chem., Int. Ed., 2000, 39,
551; (c) M. Kurmoo, Chem. Soc. Rev., 2009, 38, 1353;
(d) G. F. Whitehead, F. Moro, G. A. Timco, W. Wernsdorfer,
S. J. Teat and R. E. P. Winpenny, Angew. Chem., Int. Ed.,
2013, 52, 9932; (e) L. K. Thompson, Coord. Chem. Rev.,
2002, 233, 193; for reviews of recent work in this area see:
(f) G. A. Timco, E. J. L. McInnes and R. E. P. Winpenny,
Chem. Soc. Rev., 2013, 42, 1796; (g) P. J. Lusby, Annu.
Rep. Prog. Chem., Sect. A: Inorg. Chem., 2013, 109, 254;
(h) P. J. Lusby, Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem.,
2012, 108, 292; (i) P. J. Lusby, Annu. Rep. Prog. Chem., Sect.
A: Inorg. Chem., 2011, 107, 297; ( j) P. J. Lusby, Annu.
Rep. Prog. Chem., Sect. A: Inorg. Chem., 2010, 106, 319;
(k) P. J. Lusby, Annu. Rep. Prog. Chem., Sect. A: Inorg. Chem.,
2009, 105, 323.
2 (a) J. Yoon and E. I. Solomon, Inorg. Chem., 2005, 44, 8076;
(b) K. Brown, M. Tegoni, M. Prudencio, A. S. Pereira,
S. Besson, J. J. Moura and C. Cambilau, Nat. Struct. Biol.,
2000, 7, 191.
3 (a) A. Mondal, S. Durdevic, L.-M. Chamoreau, Y. Journaux,
M. Julve, L. Lisnard and R. Lescouëzec, Chem. Commun.,
2013, 49, 1181; (b) E. Pardo, M.-C. Dul, R. Lescouëzec,
L.-M. Chamoreau, Y. Journaux, J. Pasán, C. Ruiz-Peréz,
M. Julve, F. Lloret, R. Ruiz-García and J. Cano, Dalton
Trans., 2010, 39, 4786; (c) R. E. P. Winpenny, J. Chem. Soc.,
Dalton Trans., 2002, 1; (d) M. Murugesu, P. King, R. Clerac,
C. E. Anson and A. K. Powell, Chem. Commun., 2004, 740.
4 G. J. McManus, Z. Wang and M. J. Zaworotko, Cryst. Growth
Des., 2004, 4, 11.
5 S. T. Onions, S. L. Heath, D. J. Price, R. W. Harrington,
W. Clegg and C. J. Matthews, Angew Chem., Int. Ed., 2004,
43, 1814.
In conclusion we have prepared and characterised a new
tetracarboxamide ligand L comprising a 4,4′-bipyridine back-
bone and pendant pyrazole heterocycles. The resultant octa-
nuclear metallocycle formed with CuCl2 is a rare example of a
polynuclear cyclic array comprising more than six Cu(II) ions
assembled from large, flexible polydentate organic ligands.5,13
The closest known related complex is the octanuclear copper
array assembled from a polytopic diazine ligand reported by
Matthews et al. in 2004.5 Following this general synthetic strat-
egy a family of 4,4′-bipyridine ligands have been prepared and
will be reported in due course. We are currently exploiting
hydrothermal methodologies for the self-assembly of new
cluster and metal organic framework topologies.
6 (a) J. Wang, B. Slater, A. Alberola, H. Stoeckli-Evans,
F. S. Razavi and M. Pilkington, Inorg. Chem., 2007, 46,
4763; (b) J. Wang, B. Djukic, J. Cao, A. Alberola, F. S. Razavi
and M. Pilkington, Inorg. Chem., 2007, 46, 8560;
(c) C. R. Rice, S. Onions, N. Vidal, J. D. Wallis, M.-C. Senna,
M. Pilkington and H. Stoeckli-Evans, Eur. J. Inorg. Chem.,
2002, 8, 1985; (d) J. Wang, H. Stoeckli-Evans, S. Onions,
J. K. Halfpenny, J. D. Wallis and M. Pilkington, Chem.
Commun., 2007, 3628.
7 S. Hünig and I. Wehner, Synthesis, 1989, 552; K. E. Pryor,
G. W. Shipps, D. A. Skyler and J. Rebek, Jr., Tetrahedron,
1998, 54, 4107.
We thank Dr. P. Poddutoori (Brock University) for EPR
spectra and Prof. J. M. Rawson (University of Windsor)
8 (a) H. V. R. Dias, C. S. P. Gamage, J. Keltner,
H. V. K. Diyabalanage, I. Omari, Y. Eyobo, N. R. Dias,
2354 | Dalton Trans., 2014, 43, 2352–2355
This journal is © The Royal Society of Chemistry 2014