10.1002/cctc.201701223
ChemCatChem
FULL PAPER
methyluridine monophosphate (6-MeUMP): 3.7 min; 5-
azacytosine (5-AzaCyt), 3.7 min; 5-fluorocytosine (5-FCyt): 4.0
min; 5-ethyluracil (5-EtUra), 12 min; 6-methyl-2-thiouracil (6-
MetThioUra), 13.5 min; 6-propyl-2-thiouracil (6-PropThioUra),
19.0 min; 5-(2-bromovinyl)uracil, (5-BrVinUra), 26 min; 5-fluoro-
2-methoxy-4(1H) pyrimidinone, (5-FMP), 5 min; 6-azauracil (6-
azaUra), 4.1 min; Trifluorothymine (TFT), 19.0 min. Results were
normalized based on the nucleobase mass balance.
[25] M.A. Schumacher, D. Carter, D.M. Scott, D.S. Roos, B. Ullman, R.G.
Brennan, EMBO J. 1998, 17, 3219-3232.
[26] S. Christofferse, A. Kadziola, E. Johansson, M. Rasmussen, M.
Willemoës, K.F. Jensen, J. Mol. Biol. 2009, 393, 464-477.
[27] U.B. Rasmussen, B. Mygind, N. Per, BBA-Gen. Subjects 1986, 881,
268-275.
[28] T. Asai, C.S. Lee, A. Chandler, W.J. O'Sullivan, Comp. Biochem.
Physiol. B-Biochem. Mol. 1990, 95, 159-163.
[29] Y.P. Dai, C.S. Lee, W.J. O’Sullivan, Int. J. Parasitol. 1995, 25, 207–214.
[30] D. Carter, R.G. Donald, D. Roos, B. Ullman, Mol. Biochem. Parasitol.
1997, 87, 137-144.
Acknowledgments
[31] M.A. Schumacher, C.J. Bashor, M.H. Song, K. Otsu, S. Zhu, R. Parry,
R.J., B. Ullman, R.G. Brennan, PNAS, 2002, 99, 78-83.
[32] D. de Souza Dantas, C.R. dos Santos, G.A.G. Pereira, F.J. Medrano,
BBA. Proteins Proteom. 2008, 1784, 953-960.
We thank Peter Bonney for their continued support and
enthusiasm for the project. This work was supported by grant
SAN151610 from the Santander Foundation. Grant 2016/UEM8
from Universidad Europea de Madrid is also acknowledged.
[33] S.C. Sinha, J.L. Smith, Curr. Opin. Struct. Biol. 2001, 11, 733−739.
[34] P. Ghode, C. Jobichen, S. Ramachandran, P. Bifani, J. Sivaraman,
Biochem. Biophys. Res. Commun. 2015, 467, 577−582.
[35] N. Kunishima, Y. Asada, M. Sugahara, J. Ishijima, Y. Nodake, M.
Sugahara, M. Miyano, S. Kuramitsu, S. Yokoyama, M. Sugahara, J.
Mol. Biol. 2005, 352, 212−228
Keywords: biocatalysis • uracil phosphoribosyltransferase •
thermophiles • nucleoside-5'-monophosphates • crystallization
[1]
[2]
E. De Clercq, Antiviral Res. 2005, 67, 56-75.
C.M. Galmarini, J.R. Mackey, C. Dumontet. Lancet Oncol. 2002, 3,
415-424.
[36] Z. Li, Y. Ye, A. Godzik, Nucleic Acids Res. 2006, 34, D277-D280.
[37] L. Linde, K.F. Jensen, BBA-Protein. Struct. M. 1996, 1296, 16-22.
[38] H. K. Jensen, N. Mikkelsen, J. Neuhard. Protein Expr. Purif. 1997, 10,
356-364.
[3]
[4]
W.B. Parker, Chem. Rev. 2009, 109, 2880-2893.
B. Roy, A. Depaix, C. Périgaud, S. Peyrottes, Chem. Rev. 2016, 116,
7854-7897.
[39] M.H. Iltzsch, K.O. Tankersley, Biochem. Pharmacol. 1994, 48, 781-791.
[40] S.C. Gill, P.H. Von Hippel, Anal. Biochem. 1989, 182, 319-326.
[41] P.H. Brown, P. Schuck, Biophys. J. 2006, 90, 398 4651-4661.
[42] Holde K.E, Physical Biochemistry 1985, 2nd Ed., Prentice-Hall,
Englewood Cliffs, 440 N.
[5]
[6]
[7]
L.E. Iglesias, E.S. Lewkowicz, R. Medici, P. Bianchi, A.M. Iribarren,
Biotechnol. Adv. 2015, 33, 412-434.
M., Yoshikawa, T. Kato, T. Takenishi, Bull. Chem. Soc. Jpn. 1969, 42,
3505–3508.
[43] Z. Otwinowski, W. Minor, Meth. Enzymol. 1997, 276, 307–326.
[44] W.A. Hendrickson, J.R. Horton, D.M. LeMaster. EMBO J. 1990, 9,
1665−1672.
A. Fresco-Taboada, I. de la Mata, M. Arroyo, J. Fernández-Lucas, Appl
Microbiol Biotechnol, 2013, 97, 3773-3785.
[8]
[9]
J. Fernández-Lucas, Appl. Microbiol. Biotechnol. 2015, 99, 4615-4627.
Y. Li, Q. Ding, L. Ou, Y. Qian, J. Zhang, Biotechnol. Bioprocess Eng.
2015, 20, 37-43.
[45] T.C. Terwilliger, J. Berendzen, Acta Crystallogr. D Biol. Crystallogr.
1999, 55, 849−861.
[46] A.T. Brünger, P.D. Adams, G.M. Clore, W.L. DeLano, P. Gross, R.W.
Grosse-Kunstleve, J.S. Jiang, J. Kuszewski, M. Nilges, N.S. Pannu, R.J.
Read, L.M. Rice, T. Simonson, G.L. Warren, Acta Crystallogr. D Biol.
Crystallogr. 1998, 54, 905–921.
[10
Zou, Q. Ding, L. Ou, B. Yan, Appl. Microbiol. Biotechnol. 2013, 97,
9389-9395.
[11] R.A. Scism, D.F. Stec, B.O. Bachmann, Org. Lett. 2007, 9, 4179-4182.
[12] R.A. Scism, B.O. Bachmann, ChemBioChem 2010, 11, 67-70.
[47] R.A. Laskowski, M.W. MacArthur, D.S. Moss, J.M. Thornton, J. Appl.
Crystallogr. 1993, 26, 283−291.
[13]
H. Mori, A. Iida, S. Teshiba, T. Fujio, J. Bacteriol. 1995, 177, 4921-
4926.
[48] W.A. Kabsch, Acta Crystallogr. A 1976, 32, 922−923.
[49] M.D. Winn, C.C. Ballard, K.D. Cowtan, E.J. Dodson, P. Emsley, P.R.
Evans, R.M. Keegan, E.B. Krissinel, A.G. Leslie, A. McCoy, S.J.
McNicholas, G.N. Murshudov, N.S. Pannu, E.A. Potterton, H.R. Powell,
R.J. Read, A. Vagin, K.S. Wilson, Acta Crystallogr. D Biol. Crystallogr.
2011, 67, 235−242.
[14] H. Mori, A. Iida, T. Fujio, S. Teshiba, Appl. Microbiol. Biotechnol. 1997,
48, 693-698.
[15] I. Serra, S. Conti, J. Piškur, A.R. Clausen, B. Munch-Petersen, M.
Terreni, D. Ubiali, Adv. Synth. Catal. 2014, 356, 563-570.
[16] Z.Q. Liu, L. Zhang, L.H. Sun, X.J. Li, N.W. Wan, Y.G. Zheng, Food
Chem. 2012, 134, 948-956.
[17] Y. Mihara, T. Utagawa, H. Yamada, Y. Asano, Appl. Environ. Microbiol.
2000, 66, 2811-2816.
[18] H. Zou, G. Cai, W. Cai, H. Li, Y. Gu, Y. Park, F. Meng, Tsinghua Sci.
Technol. 2008, 13, 480-484.
[19] J. Del Arco, M. Martinez, M. Donday, V. Clemente-Suarez, J.
Fernández-Lucas, Biocatal. Biotransfor. 2017, 1-8.
[20] S. Arent, P. Harris, K.F. Jensen, S. Larsen, Biochemistry 2005, 44,
883-892.
[21] A. Kadziola, J. Neuhard, S. Larsen, Acta Crystallogr. D Biol. Crystallogr.
2002, 58, 936-945.
[22] C. Lundegaard, K.F. Jensen, Biochemistry 1999, 38, 3327-3334.
[23] S. Narayanan, P. Sanpui, L. Sahoo, S.S. Ghosh, Int. J. Biol.
Macromolec. 2016, 91, 310-316
[24] A.D. Villela, R.G. Ducati, L.A. Rosado, C.J. Bloch, M.V. Prates, D.C.
Gonçalves, C.H.I. Ramos, L.A. Basso, D.S. Santos, PLOS ONE 2013,
8, 1-14.
This article is protected by copyright. All rights reserved.