4
Tetrahedron
4.
For selected examples on C(sp3)−H activation: (a) Yang, X.; Sun,
Y.; Sun, T.-Y.; Rao, Y. Chem. Commun. 2016, 52, 6423; (b)
Zhang, Q.; Yin, X.-S.; Chen, K.; Zhang, S.-Q.; Shi, B.-F. J. Am.
Chem. Soc. 2015, 137, 8219; (c) Zhu, Y.; Tanaka, K.; Li, G.-C.;
He, J.; Fu, H.-Y.; Li, S.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2015,
137, 7067; (d) Lin, C.; Yu, W.; Yao, J.; Wang, B.; Liu, Z.; Zhang,
Y. Org. Lett. 2015, 17, 1340; (e) Shan, G.; Yang, X.; Zong, Y.;
Rao, Y. Angew. Chem. Int. Ed. 2013, 52, 13606; (f) Kuninobu, Y.;
Nakahara, T.; Takeshima, H.; Takai, K. Org. Lett. 2013, 15, 426;
(g) Mita, T.; Michigami, K.; Sato, Y. Chem. ‒ Asian J. 2013, 8,
2970; (h) Zhang, S.-Y.; He, G.; Zhao, Y.; Wright, K.; Nack, W.
A.; Chen, G. J. Am. Chem. Soc. 2012, 134, 7313; (i) Ren, Z.; Mo,
F.; Dong, G. J. Am. Chem. Soc. 2012, 134, 16991; (j) Giri, R.;
Chen, X.; Yu, J.-Q. Angew. Chem. Int. Ed. 2005, 44, 2112; (k)
Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004,
126, 9542.
Initially, coordination of the NH in amide substrate 1 to Cu(II)
generates IM1 (pathway I). Subsequently, a base-assisted
C(sp3)−H bond cupration takes place to provide the cyclic Cu(II)
intermediate IM2.8e,f Meanwhile, a nitrogen radical species
would be generated through the Cu(II)-mediated oxidation of an
amine substrate.13,14 Then an oxidative radical coupling between
the nitrogen radical species and IM2 gives a Cu(III) complex
IM3. Following C−N reductive elimination affords the desired β-
amino acid derivative 3 and releases a Cu(I) species which might
be oxidized by O2 to regenerate the reactive Cu(II). Alternatively,
coordination of amide and amine to Cu(II) delivers
cyclometallic complex IM4, which then undergoes
a
a
disproportionation process to generate Cu(III) complex IM5
(pathway II). Following C(sp3)−H activation and reductive
elimination affords the corresponding product. That 36% yield of
the desired product 3aa could be afforded under a N2 atmosphere
indicated the possibility of pathway II (Table 1, entry 20).
However, the radical trapping experiments and the positive effect
of O2 to this transformation implied that pathway I might be a
possible route as well.
To conclude, we have developed an aerobic copper-mediated
intermolecular direct amination of unactivated C(sp3)−H bonds
using simple alkylamines as the amino source. This work
represents a rare example on intermolecular direct amination of
inert C(sp3)−H bonds. This reaction features good functional
group tolerance and relatively broad substrate scope. Both cyclic
and acyclic amines are effective substrates under the standard
conditions. This method offers an alternative to rapid assemble a
diverse set of α,α-disubstituted β-amino acid derivatives. Further
investigation on the mechanism and expansion of the substrate
scope are currently undergoing in our laboratory.
5.
6.
For selected reviews on C−H amination: (a) Louillat, M.-L.;
Patureau, F. W. Chem. Soc. Rev. 2014, 43, 901; (b) Cho, S. H.;
Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068;
(c) Collet, F.; Dodd, R. H.; Dauban, P. Chem. Commun. 2009,
5061.
For selected examples on C−H amination: (a) Roane, J.; Daugulis,
O.; J. Am. Chem. Soc. 2016, 138, 4601; (b) Singh, B. K.; Polley,
A.; Jana, R. J. Org. Chem. 2016, 81, 4295; (c) Zhang, L.-B.;
Zhang, S.-K.; Wei, D.; Zhu, X.; Hao, X.-Q.; Su, J.-H.; Niu, J.-L.;
Song, M.-P. Org. Lett. 2016, 18, 1318; (d) Yan, Q.; Chen, Z.; Yu,
W.; Yin, H.; Liu, Z.; Zhang, Y. Org. Lett. 2015, 17, 2482; (e)
Matsubara, T.; Asako, S.; Ilies, L.; Nakamura, E. J. Am. Chem.
Soc. 2014, 136, 646; (f) Takamatsu, K.; Hirano, K.; Satoh, T.;
Miura, M. Org. Lett. 2014, 16, 2892; (g) Shang, M.; Sun, S.-Z.;
Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 3354; (h) He,
G.; Lu, C.; Zhao, Y.; Nack, W. A.; Chen, G. Org. Lett. 2012, 14,
2944; (i) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett.
2011, 13, 2860; (j) Miyasaka, M.; Hirano, K.; Satoh, T.;
Kowalczyk, R.; Bolm, C.; Miura, M. Org. Lett. 2011, 13, 359; (k)
Wang, Q.; Schreiber, S. L. Org. Lett. 2009, 11, 5178; (l) Kawano,
T.; Hirano, K.; Satoh, T.; Miura, M. J. Am. Chem. Soc. 2010, 132,
6900; (m) Monguchi, D.; Fujiwara, T.; Furukawa, H.; Mori, A.
Org. Lett. 2009, 11, 1607.
(a) Wang, H.; Tang, G.; Li, X. Angew. Chem., Int. Ed. 2015, 54,
13049; (b) He, J.; Shigenari, T.; Yu, J.-Q. Angew. Chem., Int. Ed.
2015, 54, 6545; (c) Gou, Q.; Liu, G.; Liu, Z.-N.; Qin, J. Chem.‒
Eur. J. 2015, 21, 15491; (d) Kang, T.; Kim, Y.; Lee, D.; Wang, Z.;
Chang, S. J. Am. Chem. Soc. 2014, 136, 4141; (e) Iglesias, Á.;
Álvarez, R.; de Lera, Á. R.; Muñiz, K. Angew. Chem., Int. Ed.
2012, 51, 2225.
(a) Aihara, Y.; Chatani, N. ACS Catal. 2016, 6, 4323; (b) Wu, X.;
Yang, K.; Zhao, Y.; Sun, H.; Li, G.; Ge, H.; Nat. Common. 2015,
6, 6462; (c) Huang, X.; Wang, Y.; Lan, J.; You, J. Angew. Chem.,
Int. Ed. 2015, 54, 9404; (d) Wang, C.; Yang, Y.; Qin, D.; He, Z.;
You, J. J. Org. Chem. 2015, 80, 8424; (e) Wu, X.; Zhao, Y.;
Zhang, G.; Ge, H. Angew. Chem., Int. Ed. 2014, 53, 3706; (f)
Wang, Z.; Ni, J.; Kuninobu, Y.; Kanai, M. Angew. Chem., Int. Ed.
2014, 53, 3496; (g) He, G.; Zhang, S.-Y.; Nack, W. A.; Li, Q.;
Chen, G. Angew. Chem., Int. Ed. 2013, 52, 11124; (h) He, G.;
Zhao, Y.; Zhang, S.; Lu, C.; Chen, G. J. Am. Chem. Soc. 2012,
134, 3; (i) Nadre, E. T.; Daugulis, O. J. Am. Chem. Soc. 2012,
134, 7.
Acknowledgments
7.
8.
This work was supported by grants from the National NSF of
China (No. 21502123), and Comprehensive Training Platform of
Specialized Laboratory, College of Chemistry, Sichuan
University.
References and notes
1.
(a) Palomer, A.; Príncep, M.; Guglietta, A. Annu. Rep. Med.
Chem. 2007, 42, 63; (b) Gianotti, M.; Corti, C.; Fratte, S. D.;
Fabio, R. D.; Leslie, C. P.; Pavone, F.; Piccoli, L.; Stasi, L.;
Wigglesworth, M. J. Bioorg. Med. Chem. Lett. 2010, 20, 5069; (c)
Jiang, Z. X.; Yu, Y. B. J. Org. Chem. 2007, 72, 1464; (d)
Dominguez, C.; Toledo-Sherman, L. M.; Prime, M.; Mitchell, W.;
Went, N. US Patent 20160257674, 2016; (e) Johnson, N. W.;
Kasparec, J.; Miller, W. H.; Rouse, M. B.; Suarez, D.; Tian, X. US
Patent 20160220547, 2016; (f) Edgar, D. M.; Hangauer, D. G.;
White, J. F.; Solomon, M. US Patent 2005143348, 2005.
9.
(a) Li, W.; Huang, X.; You, J. Org. Lett. 2016, 18, 666; (b) Huang,
X.; You, J. Chem. Lett. 2015, 44, 1685; (c) Li, M.; Dong, J.;
Huang, X.; Li, K.; Wu, Q.; Song, F.; You, J. Chem. Commun.
2014, 50, 3944.
2.
(a) Paulsen, M. H.; Engqvist, M.; Ausbacher, D.; Strøma, M. B.;
Bayer, A. Org. Biomol. Chem. 2016, 14, 7570; (b) Romanens, A.;
Bélanger, G. Org. Lett. 2015, 17, 322; (c) Reddy M. D.; Watkins,
E. B. J. Org. Chem. 2015, 80, 11447; (d) Hansen, T.; Ausbacher,
D.; Flaten, G. E.; Havelkova, M.; Strøm, M. B. J. Med. Chem.
2011, 54, 858; (e) Lin, D.; Deng, G.; Wang, J.; Ding, X.; Jiang, H.;
Liu, H. J. Org. Chem. 2010, 75, 1717; (f) Moumné, R.; Denise, B.;
Parlier, A.; Lavielle, S.; Rudler, H.; Karoyan, P. Tetrahedron
Lett. 2007, 48, 8277.
10. (a) Li, K.; Wu, Q.; Lan, J.; You. J. Nature Commun. 2015, 6,
8404; (b) Li, K.; Tan, G.; Huang, J.; Song, F.; You, J. Angew.
Chem., Int. Ed. 2013, 52, 12942.
11. In the preparation of this manuscript, an intermolecular C(sp3)−H
amination with cyclic amines was reported. See: Gou, Q.; Yang,
Y.-W.; Liu, Z.-N.; Qin. J. Chem.‒ Eur. J. 2016, 22, 16057.
12. Rao, W.-H.; Shi, B.-F. Org. Chem. Front. 2016, 3, 1028.
13. Lewis, E. A.; Tolman, W. B. Chem. Rev. 2004, 104, 1047.
14. (a) Si, W.; Lu, S.; Bao, M.; Asao, N.; Yamamoto, Y.; Jin, T. Org.
Lett. 2014, 16, 620; (b) Wang, Y.-F.; Zhu, X.; Chiba, S. J. Am.
Chem. Soc. 2012, 134, 3679.
3.
For selected reviews on C−H activation: (a) Liu, J.; Chen, G.; Tan,
Z. Adv. Synth. Catal. 2016, 358, 1174; (b) Yang, X.; Shan, G.;
Wang, L.; Rao, Y. Tetrahedron Lett. 2016, 57, 819; (c) Chen, Z.;
Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem.
Front. 2015, 2, 1107; (d) Dastbaravardeh, N.; Christakakou, M.;
Haider, M.; Schnürch, M. Synthesis 2014, 46, 1421; (e) Li, H.; Li,
B.-J.; Shi, Z.-J. Catal. Sci. Technol. 2011, 1, 191; (f) Giri, R.; Shi,
B.-F.; Engle, K. M.; Maugelc, N.; Yu, J.-Q. Chem. Soc. Rev. 2009,
38, 3242; (g) Dick, A. R.; Sanford, M. S.; Tetrahedron 2006, 62,
2439.