F. Feyen et al. / Tetrahedron 64 (2008) 7920–7928
7927
2
0
1
þ
[
a
]
D
ꢀ83.8 (c 0.47, CHCl
7.29 (s, 1H); 6.49 (s, 1H); 5.92 (dd, J¼15.5, 4.8 Hz, 1H); 5.38–5.30
m, 1H); 5.13 (dd, J¼7.6, 2.6 Hz, 1H); 5.08 (d, J¼6.1 Hz, 1H); 4.54 (d,
J¼6.2 Hz, 1H); 4.44–4.37 (m, 1H); 3.97 (dd, J¼14.3, 6.2 Hz, 1H); 3.71
3
). H NMR (DMSO-d
6
, 500 MHz, 318 K):
HRMS (ESI) (C30
603.3075 (MNa ).
H
48
N
2
O
7
S) calcd 603.3074 (MNa ), found
þ
d
(
Acknowledgements
(
dd, J¼14.8, 7.7 Hz, 1H); 3.54–3.48 (m, 1H); 3.27–3.17 (m, 2H);
3
2
9
.16–3.08 (m, 1H); 2.65 (s, 3H); 2.41–2.33 (m, 2H); 2.07 (s, 3H);
.11–2.03 (m, 1H); 2.03–1.93 (m, 1H); 1.85–1.76 (m, 1H); 1.40 (s,
H); 1.16 (s, 3H); 1.08 (d, J¼6.7 Hz, 3H); 1.02 (d, J¼6.9 Hz, 3H); 0.90
The excellent support by the mass spectrometry facility at the
Laboratory of Organic Chemistry of the ETH Z u¨ rich is gratefully
acknowledged.
(
s, 3H). 13C NMR (100 MHz, CDCl
3
): d 219.9, 170.4,165.6, 155.6, 151.3,
1
37.8, 124.9, 120.4, 117.5, 115.2, 79.7, 77.2, 74.2, 71.0, 54.7, 49.5, 42.9,
Supplementary data
4
3
1
1.3, 39.9, 38.1, 33.8, 29.7, 28.5, 21.7, 18.7, 16.1, 13.7, 10.9; IR (film):
460 (br), 1977, 2926, 2360, 2332, 1735, 1688, 1466, 1413, 1366,
283, 1248, 1166, 986, 746. MS (MALDI) m/z (rel intensity) 601
1H NMR spectra of compounds 1 and 2. Analytical RP-HPLC
traces of compounds 1 and 2 and the FC-purified mixture of 1 and 2
obtained after diimide reduction of 2. Supplementary data associ-
þ
þ
(
4
[MNa ], 75), 579 ([MH ], 5), 567 (17), 545 (49), 523 (21), 506 (18),
79 (100), 457 (20), 413 (19), 391 (27), 314 (20), 235 (15), 178 (31).
þ
HRMS (ESI) (C30
H
46
N
2
O
7
S) calcd 601.2918 (MNa ), found 601.2919
þ
(
MNa ).
References and notes
3.1.17. (E)-(2S,9S,10S,11R,14S)-10,14-Dihydroxy-9,11,13,13-
tetramethyl-2-[(E)-1-methyl-2-(2-methylthiazol-4-yl)-vinyl]-12,16-
dioxo-1-oxa-5-aza-cyclohexadecane-5-carboxylic acid tert-
butylester (1)
1
. (a) Cragg, G. M.; Newman, D. J. Pure Appl. Chem. 2005, 77, 7–24; (b) Anticancer
Agents from Natural Products; Cragg, G. M., Kingston, D. G. I., Newman, D. J., Eds.;
CRC: Boca Raton, FL, 2005; (c) Cragg, G. M.; Newman, D. J.; Snader, K. M. Nat.
Prod. Rep. 2000, 17, 215–234.
. Selected reviews: (a) Butler, M. S. J. Nat. Prod. 2004, 67, 2141–2153; (b) Hamann,
M. T. Curr. Pharm. Des. 2003, 9, 879–889.
To a solution of cycloalkene 2 (24 mg, 0.046 mmol) in CH
2 2
Cl
2
(
10 ml) were added 500 mg (2.58 mmol) of dipotassium diazo-
33
dicarboxylate (PADA) followed by AcOH (100
Two additional aliquots of AcOH (100 l each) were added after
0 min and 60 min, respectively (5.16 mmol of AcOH in total), and
the mixture was stirred at rt. This procedure was repeated after
8 h, 21 h, and 24 h. The progress of the reaction was monitored
ml, 1.72 mmol).
3. For an example where total synthesis has served to provide material of
a complex natural product (discodermolide) for Phase I clinical studies see:
Mickel, S. J. Curr. Opin. Drug Discov. Dev. 2004, 7, 869–881.
4. For examples from the area of microtubule-stabilizing natural products see:
Altmann, K.-H.; Gertsch, J. Nat. Prod. Rep. 2007, 24, 327–357.
m
4
5
6
. Burke, M. D.; Schreiber, S. L. Angew. Chem., Int. Ed. 2004, 43, 46–58.
. N o¨ ren-M u¨ ller, A.; Reis-Corr eˆ a, I., Jr.; Prinz, H.; Rosenbaum, C.; Saxena, K.;
Schwalbe, H. J.; Vestweber, D.; Cagna, G.; Schunk, S.; Schwarz, O.; Schiewe, H.;
Waldmann, H. Proc. Natl. Acad. Sci. U.S.A. 2005, 103, 10606–10611.
1
by ESI-MS (MþK peaks at m/z 617 and 619 for 2 and 1, re-
Ò
spectively). After 40 h the mixture was filtered through HYFLO
7. Tietze, L. F.; Bell, H. P.; Chandrasekar, S. Angew. Chem., Int. Ed. 2003, 42, 3996–
and the filter was washed with three 5 ml portions of CH
combined filtrates were evaporated, the residue was redissolved
in CH Cl (10 ml) and PADA and AcOH were added in the same
2 2
Cl . The
4028.
8
. (a) Feyen, F.; Cachoux, F.; Gertsch, J.; Wartmann, M.; Altmann, K.-H. Acc. Chem.
Res. 2008, 41, 21–31; (b) Feyen, F.; Gertsch, J.; Wartmann, M.; Altmann, K.-H.
Angew. Chem., Int. Ed. 2006, 45, 5880–5885.
2
2
amounts and by the same procedure as described above, with
additional PADA and AcOH being added after 56 h, 60 h, and 64 h
9
. Altmann, K.-H.; Fl o¨ rsheimer, A.; Bold, G.; Caravatti, G.; Wartmann, M. Chimia
2004, 58, 686–690.
(
total reaction time). After 80 h the mixture was worked up as for
the 40 h time point, the product mixture was redissolved in 10 ml
of CH Cl and PADA and AcOH were added as before. Additional
10. For recent reviews on the chemistry, biology, and clinical applications of
epothilones see: (a) Altmann, K.-H.; Pfeiffer, B.; Arseniyadis, S.; Pratt, B. A.;
Nicolaou, K. C. ChemMedChem 2007, 2, 396–423; (b) H o¨ fle, G.; Reichenbach, H.
In Anticancer Agents from Natural Products; Cragg, G. M., Kingston, D. G. I.,
Newman, D. J., Eds.; CRC: Boca Raton, FL, 2005; pp 413–450.
2
2
aliquots of PADA/AcOH were added after 170 h and 174 h,
bringing the total amount of PADA/AcOH added in the course of
the reaction to 28.38 mmol/56.76 mmol. After 190 h the mixture
was worked up by filtration through HYFLO ; the filter was
washed with CH
evaporated. The residue was submitted to FC in AcOEt/hexane
providing 21.8 mg (91%) of a 4/1 mixture of 1 and 2 (according to
analytical RP-HPLC). Purification of this material by preparative
RP-HPLC gave 7.6 mg of pure 1 together with 1.0 mg (4%) of
starting material 2. A second chomatographic run with mixed
fractions from the first separation gave additional 4.8 mg of 1
bringing the total yield to 12.4 mg (52%).
11. Larkin, J. M. G.; Kaye, S. B. Expert Opin. Invest. Drugs 2006, 15, 691–702.
12. (a) Chou, T. C.; Dong, H. J.; Zhang, X. G.; Tong, W. P.; Danishefsky, S. J. Cancer Res.
2005, 65, 9445–9454; (b) Rivkin, A.; Yoshimura, F.; Gabarda, A. E.; Cho, Y. S.;
Ò
Chou, T. C.; Dong, H. J.; Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 10913–
10922; (c) Yoshimura, F.; Rivkin, A.; Gabarda, A. E.; Chou, T. C.; Dong, H. J.;
Sukenick, G.; Morel, F. F.; Taylor, R. E.; Danishefsky, S. J. Angew. Chem., Int. Ed.
2
Cl
2
(3ꢂ5 ml) and the combined filtrates were
2003, 42, 2518–2521; (d) Rivkin, A.; Yoshimura, F.; Gabarda, A. E.; Chou, T. C.;
Dong, H. J.; Tong, W. P.; Danishefsky, S. J. J. Am. Chem. Soc. 2003, 125, 2899–
2901; (e) Chou, T. C.; Dong, H. J.; Rivkin, A.; Yoshimura, F.; Gabarda, A. E.; Cho,
Y. S.; Tong, W. P.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2003, 42, 4761–4767.
13. For a side-chain-modified analog of 1 with enhanced antiproliferative activity
cf. Ref. 8b.
14. A preliminary account of this work has appeared as a short conference report:
Feyen, F.; Gertsch, J.; Wartmann, M.; Altmann, K.-H. Chimia 2007, 61, 143–146.
15. (a) Altmann, K.-H.; Bold, G.; Caravatti, G.; Denni, D.; Fl o¨ rsheimer, A.; Schmidt,
A.; Rihs, G.; Wartmann, M. Helv. Chim. Acta 2002, 85, 4086–4110; (b) Schinzer,
D.; Bauer, A.; Schieber, J. Chem.dEur. J. 1999, 5, 2492–2500; (c) Mulzer, J.;
Mantoulidis, A.; Oehler, E. J. Org. Chem. 2000, 65, 7456–7467.
2
0
). 1H NMR (500 MHz, 318 K, CDCl
3 3
):
[
a]
D
ꢀ4.3 (c 0.98, CHCl
d
7.01 (s, 1H); 6.64 (s, 1H); 5.18 (d, J¼9.7 Hz, 1H); 4.38 (d,
J¼9.7 Hz, 1H); 3.72 (dd, J¼7.2, 3.0 Hz, 1H); 3.63–3.45 (br m, 1H);
16. White, J. D.; Carter, R. G.; Sundermann, K. F.; Wartmann, M. J. Am. Chem. Soc.
3
2
2
1
9
.38–3.30 (m, 1H); 3.30–3.12 (m, 2H); 3.10–2.94 (br m, 1H);
.93–2.86 (m, 1H); 2.78 (s, 3H); 2.50 (dd, J¼14.4, 11.2 Hz, 1H);
.40 (dd, J¼14.3, 2.1 Hz, 1H); 2.30–2.10 (br m, 1H); 2.07 (s, 3H);
2001, 123, 5407–5413.
17. (a) Klar, U.; R o¨ hr, B.; Kuczynski, F.; Schwede, W.; Berger, M.; Skuballa, W.;
Buchmann, B. Synthesis 2005, 301–305; (b) F u¨ rstner, A.; Mathes, C.; Lehmann,
C. W. Chem.dEur. J. 2001, 7, 5299–5317; (c) Taylor, R. E.; Galvin, G. M.; Hilfiker,
K. A.; Chen, Y. J. Org. Chem. 1998, 63, 9580–9583; (d) Schinzer, D.; Limberg, A.;
B o¨ hm, O. Chem.dEur. J. 1996, 2, 1477–1482.
18. (a) Klar, U.; Buchmann, B.; Schwede, W.; Skuballa, W.; Hoffmann, J.; Lichtner,
R. B. Angew. Chem., Int. Ed. 2006, 45, 7942–7948; (b) Taylor, R. E.; Chen, Y.;
Galvin, G. M.; Pabba, P. K. Org. Biomol. Chem. 2004, 2, 127–132.
.88–1.75 (m, 2H); 1.70–1.52 (m, 3H); 1.50–1.45 (m, 1H); 1.45 (s,
H); 1.42 (s, 3H); 1.40–1.30 (m, 1H); 1.14 (d, J¼6.9 Hz, 3H); 1.07
13
(
d
s, 3H); 0.97 (d, J¼7.1 Hz, 3H). C NMR (100 MHz, CDCl
219.7, 171.0, 170.2, 155.0, 151.7, 139.6, 117.5, 115.4, 79.5, 76.6,
1.7, 71.4, 53.9, 48.2, 43.6, 41.4, 39.2, 35.1, 33.8, 28.2, 27.8, 23.7,
1.4, 18.5, 17.6, 16.1, 15.7, 11.2. IR (film): 3460 (br), 2969, 2926,
3
):
7
2
2
19. (a) Schinzer, D.; Bourguet, E.; Ducki, S. Chem.dEur. J. 2004, 10, 3217–3224; (b)
Schinzer, D.; B o¨ hm, O.; Altmann, K.-H.; Wartmann, M. Synlett 2004, 1375–1378.
0. Koch, G.; Loiseleur, O.; Fuentes, D.; Jantsch, A.; Altmann, K.-H. Synlett 2004,
2
358, 2339, 1731, 1681, 1473, 1419, 1369, 1287, 1252, 1151, 976,
6
93–697.
1. Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. J. Chem. Soc., Chem.
Commun. 1987, 1625–1627.
þ
7
40. MS (MALDI) m/z (rel intensity) 603 ([MNa ], 57), 581
2
þ
(
[MH ], 23), 547 (18), 525 (100), 481 (73), 262 (6), 178 (9).