s, CH3), 1.81 (3H, s, CH3), 2.09–214 (2H, q, CH2), 2.21–2.25 (2H,
t, CH2), 5.09,5.10 (3H, d, CH–, CH2), 5.58–5.61 (1H, t, CH–),
7.48–7.52 (1H, m, ArH), 7.55-7.58 (2H, t, ArH), 7.70,7.72 (2H, d,
ArH);
Acknowledgements
The authors acknowledge Fundac¸a˜o para a Cieˆncia e Tecnologia
(FCT) and FEDER [Project PTDC/QUI/67674/2006 and grants
BD/17945/2004 and BPD/43853/2008], for financial support.
4.2.6. 1-(3,7-Dimethylocta-1,6-dien-3-yl)-4-phenyl-1H-tetra-
zol-5(4H)-one (15). The solution remaining from the recrystal-
lization of ether 14 was evaporated under reduced pressure, to
afford the required product as yellow oil (1.6 g, 36% yield).
A neat sample of (E)-5-(3,7-dimethylocta-2,6-dienyloxy)-1-
References
1 S. C. S. Bugalho, E. M. S. Mac¸oˆas, M. L. S. Cristiano and R. Fausto,
Phys. Chem. Chem. Phys., 2001, 3, 3541.
2 T. Mavromoustakos, A. Kolocouris, M. Zervou, P. Roumelioti, J.
Matsoukas and R. Weisemann, J. Med. Chem., 1999, 42, 1714.
3 J. H. Toney, P. M. D. Fitzgerald, N. Grover-Sharma, S. H. Olson, W.
J. May, J. G. Sundelof, D. E. Vanderwall, K. A. Cleary, S. K. Grant, J.
K. Wu, J. W. Kozarich, D. L. Pompliano and G. G. Hammond, Chem.
Biol., 1998, 5, 185.
4 Y. Hashimoto, R. Ohashi, Y. Kurosawa, K. Minami, H. Kaji, K.
Hayashida, H. Narita and S. Murata, J. Cardiovasc. Pharmacol., 1998,
31, 568.
◦
phenyl-1H-tetrazole (0.8 g; 2.7 mmol) was heated at 40 C for 1
h to give 1-(cyclohex-2-enyl)-4-phenyl-1H-tetrazol-5(4H)-one as
yellow oil (quantitative yield). IR nmax: 1725, 1598, 1560, 1502,
1376, 757 cm-1; 1H NMR (400 MHz, CDCl3): d 1.54 (3H, s, CH3),
1.57 (3H, s, CH3), 1.77 (3H, s, CH3), 1.98–2.37 (4H, m, –CH2CH2–
), 5.01–5.07 (1H, t, CH–), 5.16–5.25 (2H, m, CH2), 623–6.30
(1H, m, CH–), 7.36–7.40 (1H, t, ArH), 7.48–7.52 (2H, t, ArH),
7.85,7.87 (2H, d, ArH); 13C NMR (100 MHz, CD3OD): dC 16.37,
21.69, 22.19, 24.54, 36.97, 64.95, 113.63, 119.38, 122.75, 127.53,
129.03, 131.75, 134.55, 139.51, 148.76;MS (EI), m/z 299 [M+H]+;
Anal. Calcd for C17H22N4O: C, 68.43; H, 7.43; N, 18.78%. Found:
C, 68.22; H, 7.75; N, 18.30%.
5 A. Desarro, D. Ammendola, M. Zappala, S. Grasso and G. B. Desarro,
Antimicrob. Agents Chemother., 1995, 39, 232.
6 A. D. Abell and G. J. Foulds, J. Chem. Soc., Perkin Trans. 1, 1997, 2475.
7 Y. Tamura, F. Watanabe, T. Nakatani, K. Yasui, M. Fuji, T.
Komurasaki, H. Tsuzuki, R. Maekawa, T. Yoshioka, K. Kawada, K.
Sugita and M. Ohtani, J. Med. Chem., 1998, 41, 640.
8 G. Sandmann, C. Schneider and P. Boger, Z. Naturforsch. C, 1996, 51,
534.
9 G. I. Koldobskii, V. A. Ostrovskii and V. S. Poplavskii, Khim.
Geterotsikl. Soedin., 1981, 10, 1299.
4.3. Computational details
10 R. A. Abramovitch, C. I. Azogu, I. T. McMaster and D. P. Vanderpool,
J. Org. Chem., 1978, 43, 1218.
11 L. M. T. Frija, R. Fausto, R. M. S. Loureiro and M. L. S. Cristiano, J.
Mol. Catal. A: Chem., 2009, 305, 142.
12 L. M. T. Frija, I. V. Khmelinskii and M. L. S. Cristiano, Tetrahedron
Lett., 2005, 46, 6757.
13 L. M. T. Frija, I. V. Khmelinskii and M. L. S. Cristiano, J. Org. Chem.,
2006, 71, 3583.
14 L. M. T. Frija, I. V. Khmelinskii, C. Serpa, I. D. Reva, R. Fausto and
M. L. S. Cristiano, Org. Biomol. Chem., 2008, 6, 1046.
15 L. M. T. Frija, A. Ismael and M. L. S. Cristiano, Molecules, 2010, 15,
3757.
For all considered systems, all the calculations were carried out
using the Gaussian 03 program package.31 At the DFT(B3LYP)
level of theory32,33 with the standard 6-31G(d,p) basis set,34 the
geometries of the investigated molecules were fully optimized
and the harmonic vibrational frequencies were calculated. The
nature of the obtained stationary points was checked through
the analysis of the corresponding Hessian matrices. Absence of
imaginary frequencies indicated that they correspond to true
minima. This also enabled the determination of thermodynamic
quantities such as zero-point-corrected vibrational energy and
free energy at 298.15 K. All relevant barriers to intramolecular
rearrangements were calculated using either the QST2 or QST3
variety of the synchronous transit-guided quasi-Newton (STQN)
method.35,36 All transition states were characterized as first-order
saddle points by the presence of one imaginary frequency, as
revealed by analysis of the corresponding Hessian matrices and
visualization of the corresponding vibrational mode graphically.
Natural bond orbital (NBO) analysis was performed using NBO
3, as implemented in Gaussian 03.
The full geometry optimizations were also carried out at the
MP2 level of theory37–39 with the same 6-31G(d,p) basis set as used
in the DFT calculations. The large size of the studied molecules
did not allow analytical calculation of the MP2 vibrational
frequencies, due to the limitations of the 32-bit version of Gaussian
03 for Windows. Their characterization as minima or saddle
points was concluded on the basis of geometrical resemblance
with the similar structures obtained at the DFT level of theory
and also based on the absence of the lower-energy structures
after applying optimization with the “tight” criteria and without
symmetry restriction. For a few most important geometries (the
most stable conformers of 10, 12, 17, TS2a and TS2b), the
vibrational MP2 characterization was carried out numerically,
at a very high computational cost, and confirmed the general
conclusions.
16 R. A. W. Johnstone, A. H. Wilby and I. D. Entwistle, Chem. Rev., 1985,
85, 129.
17 M. L. S. Cristiano, R. A. W. Johnstone and P. J. Price, J. Chem. Soc.,
Perkin Trans. 1, 1996, 1453.
18 N. C. P. Arau´jo, A. F. Brigas, M. L. S. Cristiano, L. M. T. Frija, E. M.
O. Guimara˜es and R. M. S. Loureiro, J. Mol. Catal. A: Chem., 2004,
215, 113.
19 L. M. T. Frija, M. L. S. Cristiano, E. M. O. Guimara˜es, N. C. Martins,
R. M. S. Loureiro and J. Bikley, J. Mol. Catal. A: Chem., 2005, 242,
241.
20 S. C. S. Bugalho, L. Lapinski, M. L. S. Cristiano, L. M. T. Frija and R.
Fausto, Vibrat. Spectrosc., 2002, 3541.
21 J. V. Barkley, M. L. S. Cristiano, R. A. W. Johnstone and R. M. S.
Loureiro, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1997, 53,
383.
22 N. C. P. Arau´jo, P. M. M. Barroca, J. F. Bickley, A. F. Brigas, M. L. S.
Cristiano, R. A. W. Johnstone, R. M. S. Loureiro and P. C. A. Pena, J.
Chem. Soc., Perkin Trans. 1, 2002, 1213.
23 M. L. S. Cristiano, A. F. Brigas, R. A. W. Johnstone, R. M. S. Loureiro
and P. C. A. Pena, J. Chem. Res. (S), 1999, 704.
24 A. Go´mez-Zavaglia, A. Kaczor, R. Almeida, M. L. S. Cristiano, M. E.
S. Euse´bio, T. M. R. Maria, P. Mobili and R. Fausto, J. Phys. Chem.
A, 2009, 113, 3517.
25 M. L. S. Cristiano and R. A. W. Johnstone, J. Chem. Soc., Perkin Trans.
2, 1997, 489.
26 M. L. S. Cristiano and R. A. W. Johnstone, J. Chem. Res. (S), 1997,
164.
27 I. Da˛bkowska, P. Jurecˇka and P. Hobza, J. Chem. Phys., 2005, 122,
204322.
28 W. McCarthy, A. M. Plokhotnichenko, E. D. Radchenko, J. Smets, D.
M. A. Smith, S. G. Stepanian and L. Adamowicz, J. Phys. Chem. A,
1997, 101, 7208.
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 6040–6054 | 6053
©