as templates to direct the arrangement of AuNPs. In short, this
work is the first example to explore the reversible morphology
transformation of a DNA–dendron hybrid without changing
the DBC structure, providing a unique approach to tune the
morphology of amphiphilic assemblies and in the end would
benefit the development of general and applicable methods
in designing functional and smart nanomaterials. Taking
advances of biotechnology and materials science into account,
we believe that our hybrids have potential application in
biosensor,17 drug delivery1 and other related fields.
Fig. 3 XRD profiles of the G2Cl-18 nanofibers and MOMG2Cl dendron
(A) and samples prepared on the substrate at 90 1C, spherical micelles and
nanofibers with 10 vol% THF addition in the control experiment (B).
The authors thank Prof. Monika Schoenhoff and Dr Jan
Gauczinski of University of Munster (Germany) for the NMR
¨
interaction was destroyed. Neither the sample prepared at
90 1C nor the spherical micelles showed observable XRD signals
(Fig. 3B), suggesting little p–p stacking effect in these two
samples. In fact, p–p stacking was also proven to be the driving
force in the assembly of the sole dendron part.15 The XRD
pattern of MOMG2Cl is shown in Fig. 3A for comparison.
Finally, to demonstrate the functionalization potential of
the system, we used complementary strand modified 5 nm
gold nanoparticles (AuNPs) to hybridize with G2Cl-18.
The DNA–AuNP conjugates were prepared according to the
published method.16 When the G2Cl-18 nanofibers were mixed
with the DNA–AuNP conjugates, long AuNP chains were
achieved as shown in TEM, Fig. 4A, compared to the randomly
dispersed AuNPs in the control experiment (Fig. S8, ESIw). We
also mixed the G2Cl-18 spherical micelles with the DNA–AuNP
conjugates. As expected, clusters were observed, as DNA–AuNP
conjugates hybridized with G2Cl-18 and accumulated around
spherical micelles. It is known that without particular modification,
AuNPs randomly disperse in solution instead of forming clusters,
therefore, we conclude that the clusters in Fig. 4B were indeed
templated by the spherical micelles. The average diameter of
the clusters was about 25 nm, which is reasonable considering
the diameter of the AuNPs.
test. We also thank National Basic Research Program of China
(973 program, No. 2011CB935701), the National Natural
Science Foundation of China (No. 21121004 & 91027046),
and NSFC-DFG joint project TRR61 for financial support.
Notes and references
1 (a) Z. L. Tyrrell, Y. Q. Shen and M. Radosz, Prog. Polym. Sci.,
2010, 35, 1128; (b) J. K. Kim, S. Y. Yang, Y. Lee and Y. Kim,
Prog. Polym. Sci., 2010, 35, 1325.
2 Y. Geng, P. Dalhaimer, S. Cai, R. Tsai, M. Tewari, T. Minko and
D. E. Discher, Nat. Nanotechnol., 2007, 2, 249.
3 (a) L. F. Zhang and A. Eisenberg, Science, 1995, 268, 1728;
(b) S. Jain, Science, 2003, 300, 460; (c) H. Cui, Z. Chen, S. Zhong,
K. L. Wooley and D. J. Pochan, Science, 2007, 317, 647; (d) X. Liu
and M. Jiang, Angew. Chem., Int. Ed., 2006, 45, 3846; (e) N. Ma,
Y. Li, H. Xu, Z. Wang and X. Zhang, J. Am. Chem. Soc., 2009,
132, 442; (f) L. Jia, D. Levy, D. Durand, M. Imperor-Clerc, A. Cao
´ ´
and M.-H. Li, Soft Matter, 2011, 7, 7395.
4 M. Kwak and A. Herrmann, Chem. Soc. Rev., 2011, 40, 5745.
5 D. Liu, E. Cheng and Z. Yang, NPG Asia Mater., 2011, 3, 109.
6 (a) F. E. Alemdaroglu, K. Ding, R. Berger and A. Herrmann,
Angew. Chem., Int. Ed., 2006, 45, 4206; (b) K. M. M. Carneiro,
F. A. Aldaye and H. F. Sleiman, J. Am. Chem. Soc., 2010, 132, 679;
(c) M.-P. Chien, A. M. Rush, M. P. Thompson and N. C. Gianneschi,
Angew. Chem., Int. Ed., 2010, 49, 5076.
7 K. Ding, F. E. Alemdaroglu, M. Borsch, R. Berger and
¨
A. Herrmann, Angew. Chem., Int. Ed., 2007, 46, 1172.
8 (a) L. Wang, Y. Feng, Y. Sun, Z. Li, Z. Yang, Y.-M. He, Q.-H. Fan
and D. Liu, Soft Matter, 2011, 7, 7187; (b) P. Chen, Y. Sun, H. Liu,
L. Xu, Q. Fan and D. Liu, Soft Matter, 2010, 6, 2143; (c) Y. Sun,
H. Liu, L. Xu, L. Wang, Q.-H. Fan and D. Liu, Langmuir, 2010,
26, 12496.
9 C. Allen, D. Maysinger and A. Eisenberg, Colloids Surf., B, 1999, 16, 3.
10 I. LaRue, M. Adam, M. Pitsikalis, N. Hadjichristidis,
M. Rubinstein and S. S. Sheiko, Macromolecules, 2006, 39, 309.
11 (a) R. Resendes, J. A. Massey, H. Dorn, K. N. Power,
M. A. Winnik and I. Manners, Angew. Chem., Int. Ed., 1999,
38, 2570; (b) R. Resendes, J. A. Massey, K. Temple, L. Cao,
K. N. Power-Billard, M. A. Winnik and I. Manners, Chem.–Eur.
J., 2001, 7, 2414.
In conclusion, we have investigated the self-assembly behavior
of the DNA–dendron hybrid G2Cl-18 in detail. The morphology
of the resulting assemblies can be well controlled by tuning the
assembly environment. The two aggregates, spherical micelles and
nanofibers, could be reversibly transformed by only alternatively
changing the assembly conditions, and the process was confirmed
by TEM and DLS. Reasons for this transformation were
proposed according to the achievable experiment results. p–p
stacking of the G2Cl-18 is considered to be the driving force of
the nanofiber formation as characterized by XRD. We also
showed that spherical micelles and nanofibers could function
12 L. F. Zhang and A. Eisenberg, Macromolecules, 1999, 32, 2239.
13 T. Smart, H. Lomas, M. Massignani, M. V. Flores-Merino,
L. R. Perez and G. Battaglia, Nano Today, 2008, 3, 38.
14 (a) J. A. Massey, K. Temple, L. Cao, Y. Rharbi, J. Raez, M. A.
Winnik and I. Manners, J. Am. Chem. Soc., 2000, 122, 11577;
(b) H. Schmalz, J. Schmelz, M. Drechsler, J. Yuan, A. Walther,
K. Schweimer and A. M. Mihut, Macromolecules, 2008, 41, 3235.
15 Y. Feng, Z.-T. Liu, J. Liu, Y.-M. He, Q.-Y. Zheng and Q.-H. Fan,
J. Am. Chem. Soc., 2009, 131, 7950.
16 T. Zhang, P. Chen, Y. Sun, Y. Xing, Y. Yang, Y. Dong, L. Xu,
Z. Yang and D. Liu, Chem. Commun., 2011, 47, 5774.
17 (a) M. Zhou and S. Dong, Acc. Chem. Res., 2011, 44, 1232;
(b) M. Zhou, Y. Du, C. Chen, B. Li, D. Wen, S. Dong and
E. Wang, J. Am. Chem. Soc., 2010, 132, 2172; (c) M. Zhou and
J. Wang, Electroanalysis, 2012, 24, 197; (d) M. Zhou, N. Zhou,
Fig. 4 TEM images of 5 nm AuNP chains and clusters templated
by G2Cl-18 nanofibers (A) and spherical micelles (B) respectively.
The scale bar is 100 nm.
F. Kuralay, J. R. Windmiller, S. Parkhomovsky, G. Valde
Ramırez, E. Katz and J. Wang, Angew. Chem., Int. Ed., 2012,
DOI: 10.1002/anie.201107068.
´
s-
´
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 3715–3717 3717