RSC Advances
Paper
Program by the Austrian Federal Ministry of Transport, Inno-
vation and Technology (BMVIT), the Austrian Federal Ministry
of Digital and Economic Affairs (BMDW), and the State of Styria
(Styrian Funding Agency SFG).
Notes and references
¨
1 (a) A. Brennfuhrer, H. Neumann and M. Beller, Angew.
Chem., Int. Ed., 2009, 48, 4114–4133; (b) M. Beller and
X.-F. Wu, in Transition Metal Catalyzed Carbonylation
Reactions, Reductive Carbonylations, Springer, Berlin,
Heidelberg, 2013, ch. 3; (c) C. F. J. Barnard,
Organometallics, 2008, 27, 5402–5422.
2 L. Revathi, L. Ravindar, J. Leng, K. P. Rakesh and H.-L. Qin,
Asian J. Org. Chem., 2018, 7, 662–682.
3 C. E. Fuller, J. Org. Chem., 1991, 56, 3493–3496.
4 E. Zhang, J. Tang, S. Li, P. Wu, J. E. Moses and
K. B. Sharpless, Chem.–Eur. J., 2016, 22, 5692–5697.
5 (a) J. Dong, L. Krasnova, M. G. Finn and K. Barry Sharpless,
Angew. Chem., Int. Ed., 2014, 53, 9430–9448; (b) J. Dong,
K. B. Sharpless, L. Kwisnek, J. S. Oakdale and V. V. Fokin,
Angew. Chem., Int. Ed., 2014, 53, 9466–9470.
6 X. Y. Wang, J. Leng, S. M. Wang, A. M. Asiri, H. M. Marwani
and H. L. Qin, Tetrahedron Lett., 2017, 58, 2340–2343.
7 (a) Y. Gan, G. Wang, X. Xie and Y. Liu, J. Org. Chem., 2018, 83,
Fig. 4 (a) Unreactive substrates containing electron withdrawing
groups; (b) substrates containing electron donating groups. For 43 min
conditions, see Scheme 2a. Conditions: feed 1: 0.2 M fluorosulfonate,
1.5 equiv. pyridine and 0.15 equiv. Ph2O in DMSO; feed 2: 1.25 mol%
Pd(OAc)2 and 2.5 mol% dppp in DMSO. 120 ꢀC temperature and 10 bar
system pressure. Feed 1/feed 2/H2/CO
¼
0.08 : 0.08 : 1.5 : 0.5
mL minꢁ1, corresponding to a tres ¼ 123 min.
Substrates bearing a substituent in ortho position to the u-
orosulfonate group afforded the corresponding aldehyde either
in low yield, for 1r and 1u, or no yield, for 1d and 1o. The drop in
yield could be caused by steric hindrance from the ortho-
substituent. The steric block on the catalytic center will favor the
addition of the much smaller hydrogen molecule instead of
a larger CO molecule, resulting in the hydrogenated product.
In conclusion, we have described a continuous ow method
for the Pd-catalyzed synthesis of valuable aryl aldehyde building
blocks from aryl uorosulfonates and syngas as an inexpensive,
atom-economic, and environmentally friendly source of CO and
H2. The continuous ow approach enabled the precise addition
of gas by using mass ow controllers. Meta and para substituted
aryl uorosulfonates could be converted to their corresponding
aldehydes in good to excellent yields. Catalyst decomposition
was successfully avoided by using DMSO as solvent. DMSO
coordinates to Pd0 and facilitates the re-oxidation to PdII.
Additionally, reaction rates and selectivity could be enhanced by
the use of DMSO. Starting materials for the reductive carbon-
ylation could be conveniently derived in excellent yields from
readily-available phenols and the commodity chemical sulfuryl
uoride. The developed process is especially appealing for the
chemical industry, where reagent cost and availability are
important factors in process feasibility.
¯
14036–14048; (b) V. Bieliu Nas and W. M. De Borggraeve, J.
Org. Chem., 2019, 84, 15706–15717.
8 (a) S. D. Schimler, M. A. Cismesia, P. S. Hanley,
R. D. J. Froese, M. J. Jansma, D. C. Bland and
M. S. Sanford, J. Am. Chem. Soc., 2017, 139, 1452–1455; (b)
S. D. Schimler, R. D. J. Froese, D. C. Bland and
M. S. Sanford, J. Org. Chem., 2018, 83, 11178–11190.
9 (a) T. Lim, S. Byun and B. M. Kim, Asian J. Org. Chem., 2017,
6, 1222–1225; (b) P. S. Hanley, T. P. Clark, A. L. Krasovskiy,
M. S. Ober, J. P. O'Brien and T. S. Staton, ACS Catal., 2016,
6, 3515–3519.
10 M. A. McGuire, E. Sorenson, F. W. Owings, T. M. Resnick,
M. Fox and N. H. Baine, J. Org. Chem., 1994, 59, 6683–6686.
11 A. Brennfuhrer, H. Neumann and M. Beller, Synlett, 2007,
¨
2537–2540.
12 C. A. Hone, P. Lopatka, R. Munday, A. O'Kearney-McMullan
and C. O. Kappe, ChemSusChem, 2019, 12, 326–337.
13 (a) B. Gutmann, D. Cantillo and C. O. Kappe, Angew. Chem.,
Int. Ed., 2015, 54, 6688–6728; (b) M. B. Plutschack, B. Pieber,
K. Gilmore and P. H. Seeberger, Chem. Rev., 2017, 117,
11796–11893; (c) M. Movsisyan, E. I. P. Delbeke,
J. K. E. T. Berton, C. Battilocchio, S. V. Ley and
C. V. Stevens, Chem. Soc. Rev., 2016, 45, 4892–4928; (d)
C. J. Mallia and I. R. Baxendale, Org. Process Res. Dev.,
2016, 20, 327–360.
14 For reviews on the use of CO and syngas within continuous
ow, see: (a) T. Fukuyama, T. Totoki and I. Ryu, Green Chem.,
2014, 16, 2042–2050; (b) M. Ramezami, M. A. Kashpour and
A. Abolhasani, J. Flow Chem., 2020, 10, 93–101.
15 For examples of carbonylation reactions with CO gas
performed within continuous ow, see: (a) M. T. Rahman,
T. Fukuyama, N. Kamata, M. Sato and I. Ryu, Chem.
Conflicts of interest
The authors declare no competing nancial interest.
Acknowledgements
The CCFLOW project (Austrian Research Promotion Agency
FFG No. 862766) is funded through the Austrian COMET
22452 | RSC Adv., 2020, 10, 22449–22453
This journal is © The Royal Society of Chemistry 2020