The Journal of Organic Chemistry
Page 24 of 26
1
2
3
4
5
6
7
8
9
molecular electron acceptors for organic solar cells. Mater. Sci. Eng., R 2018, 124, 1-57; (c) Zhang,
J.; Tan, H. S.; Guo, X.; Facchetti, A.; Yan, H., Material insights and challenges for non-fullerene
organic solar cells based on small molecular acceptors. Nat. Energy 2018, 3 (9), 720-731; (d)
Wadsworth, A.; Moser, M.; Marks, A.; Little, M. S.; Gasparini, N.; Brabec, C. J.; Baran, D.;
McCulloch, I., Critical review of the molecular design progress in non-fullerene electron acceptors
towards commercially viable organic solar cells. Chem. Soc. Rev. 2019; (e) Nowak-Król, A.;
Shoyama, K.; Stolte, M.; Würthner, F., Naphthalene and perylene diimides – better alternatives to
fullerenes for organic electronics? Chem. Commun. 2018, 54 (98), 13763-13772.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
5.
(a) Langhals, H.; Jona, W., Intense Dyes through Chromophore–Chromophore Interactions:
Bi- and Trichromophoric Perylene-3,4:9,10-bis(dicarboximide)s. Angew. Chem. Int. Ed. 1998, 37
(7), 952-955; (b) Leroy-Lhez, S.; Baffreau, J.; Perrin, L.; Levillain, E.; Allain, M.; Blesa, M.-J.;
Hudhomme, P., Tetrathiafulvalene in a Perylene-3,4:9,10-bis(dicarboximide)-Based Dyad: A New
Reversible Fluorescence-Redox Dependent Molecular System. J. Org. Chem. 2005, 70 (16), 6313-
6320; (c) Jaggi, M.; Blum, C.; Dupont, N.; Grilj, J.; Liu, S.-X.; Hauser, J.; Hauser, A.; Decurtins,
S., A Compactly Fused π-Conjugated Tetrathiafulvalene−Perylenediimide Donor−Acceptor Dyad.
Org. Lett. 2009, 11 (14), 3096-3099; (d) Jaggi, M.; Blum, C.; Marti, B. S.; Liu, S.-X.; Leutwyler,
S.; Decurtins, S., Annulation of Tetrathiafulvalene to the Bay Region of Perylenediimide. Org.
Lett. 2010, 12 (6), 1344-1347.
6.
(a) Nowak-Krol, A.; Würthner, F., Progress in the synthesis of perylene bisimide dyes. Org.
Chem. Front. 2019, 6 (8), 1272-1318; (b) Goretzki, G.; Davies, E. S.; Argent, S. P.; Alsindi, W.
Z.; Blake, A. J.; Warren, J. E.; McMaster, J.; Champness, N. R., Bis-morpholine-Substituted
Perylene Bisimides: Impact of Isomeric Arrangement on Electrochemical and
Spectroelectrochemical Properties. J. Org. Chem. 2008, 73 (22), 8808-8814; (c) Payne, A.-J.; Song,
J.; Sun, Y.; Welch, G. C., A tetrameric perylene diimide non-fullerene acceptor via unprecedented
direct (hetero)arylation cross-coupling reactions. Chem. Commun. 2018, 54 (81), 11443-11446; (d)
Zhang, J.; Li, Y.; Huang, J.; Hu, H.; Zhang, G.; Ma, T.; Chow, P. C. Y.; Ade, H.; Pan, D.; Yan, H.,
Ring-Fusion of Perylene Diimide Acceptor Enabling Efficient Nonfullerene Organic Solar Cells
with a Small Voltage Loss. J. Am. Chem. Soc. 2017, 139 (45), 16092-16095; (e) Chamberlain, T.
W.; Davies, E. S.; Khlobystov, A. N.; Champness, N. R., Multi-Electron-Acceptor Dyad and Triad
Systems Based on Perylene Bisimides and Fullerenes. Chem. Eur. J. 2011, 17 (13), 3759-3767,
S3759/1-S3759/17; (f) Goretzki, G.; Davies, E. S.; Argent, S. P.; Warren, J. E.; Blake, A. J.;
Champness, N. R., Building Multistate Redox-Active Architectures Using Metal-Complex
Functionalized Perylene Bis-imides. Inorg. Chem. 2009, 48 (21), 10264-10274.
7.
(a) Chen, K.-Y.; Chow, T. J., 1,7-Dinitroperylene bisimides: facile synthesis and
characterization as n-type organic semiconductors. Tetrahedron Lett. 2010, 51 (45), 5959-5963;
(b) Rocard, L.; Goujon, A.; Hudhomme, P., Nitro-Perylenediimide: An Emerging Building Block
for the Synthesis of Functional Organic Materials. Molecules 2020, 25 (6).
8.
(a) El-Berjawi, R.; Hudhomme, P., Synthesis of a perylenediimide-fullerene C60 dyad: A
simple use of a nitro leaving group for a Suzuki-Miyaura coupling reaction. Dyes Pigm. 2018, 159,
551-556; (b) Rocard, L.; Hatych, D.; Chartier, T.; Cauchy, T.; Hudhomme, P., Original Suzuki–
Miyaura Coupling Using Nitro Derivatives for the Synthesis of Perylenediimide-Based Multimers.
Eur. J. Org. Chem. 2019, 2019 (47), 7635-7643; (c) Rocard, L.; Hudhomme, P., Recent
developments in the Suzuki-Miyaura reaction using nitroarenes as electrophilic coupling reagents.
Catalysts 2019, 9 (3), 213.
9.
(a) Langhals, H.; Kirner, S., Novel fluorescent dyes by the extension of the core of
perylenetetracarboxylic bisimides. Eur. J. Org. Chem. 2000, (2), 365-380; (b) Chen, K.-Y.; Fang,
T.-C.; Chang, M.-J., Synthesis, photophysical and electrochemical properties of 1-aminoperylene
ACS Paragon Plus Environment