4
Tetrahedron
81 (1998) 899-901. (d) K. P. Fu, S. C. Lafredo, B. Foleno, D. M.
Isaacson, J. F. Barrett, A. J. Tobia, M. E. Rosenthale, Antimicrob.
Agents Chemother. 36 (1992) 860-866.
Finally, optically enriched ketorolac (–)-1 was synthesized
from (–)-12 with 89% ee in 82% yield. The ee was not
diminished by treatment with RuCl3·H2O (10 mol%) and NaIO4
(5 equiv) at 0 °C in a 2:1:2 mixed solvent of CCl4, CH3CN and
3. For synthesis of (±)-1, see: (a) P. Müller, P. Polleux, Helv. Chim. Acta
81 (1998) 317-323. (b) G. C. Schloemer, R. Greenhouse, J. M.
Muchoeski, J. Org. Chem. 59 (1994) 5230-5234. (c) J. M. Muchowski,
S. H. Unger, J. Ackrell, P. Cheung, G. F. Cooper, J. Cook, P. Gallegra,
O. Halpern, R. Koehler, A. F. Kluge, A. R. Van Horn, Y. Antonio, H.
Carpio, F. Franco, E. Galeazzi, I. Garcia, R. Greenhouse, A. Guzmán, J.
Iriarte, A. Leon, A. Peña, V. Peréz, D. Valdéz, N. Ackerman, S. A.
Ballaron, D. V. Krishna Murthy, J. R. Rovito, A. J. Tomolonis, J. M.
Young, W. H. Rooks, J. Med. Chem. 28 (1985) 1037-1049. (d) F.
Franco, R. Greenhouse, J. Org. Chem. 47 (1982) 1682-1688.
4. For enzymatic resolutions of (±)-1 see: (a) Y. H. Kim, C. S. Cheong, S.
H. Lee, K. S. Kim, Tetrahedron: Asymmetry 12 (2001) 1865-1869. (b)
G. Fulling, C. J. Sih, J. Am. Chem. Soc. 109 (1987) 2845-2846.
5. (a) J. M. Richter, B. W. Whitefield, T. J. Maimore, D. W. Lin, M. P.
Castroviejo, P. S. Baran, J. Am. Chem. Soc. 129 (2007) 12857-12869.
(b) P. S. Baran, N. B. Ambhaikar, C. A. Guerrero, B. D. Hafensteiner,
D. W. Lin, J. M. Richter, ARKIVOC, (2006) 310-325. (c) P. S. Baran, J.
M. Richter, D. W. Lin, Angew. Chem. Int. Ed. 44 (2005) 609-612.
6. H. Yamamoto, E. Ho, K. Namba, H. Imagawa, M. Nishizawa, Chem.
Eur. J. 16 (2010) 11271-11274.
1
H2O (Scheme 5A).[17] The H and 13C NMR spectral data of
synthetic (–)-1 correspond well to those previously reported in
the literature.[5] With the established successful pathway to (–)-
1, its enantiomer (+)-1 having 89% ee was also synthesized from
(+)-12, which was prepared using (Ra,Sa)-Quinaphos as the
chiral auxiliary in an asymmetric cyclization of 3 (Scheme 5B).
Naturally, the optical rotations of synthetic (–)-1 and (+)-1 were
close in magnitude, but of opposite sign. Because the absolute
stereochemistry of (–)-1 and (+)-1 is equivalent to (S)- and (R)-
ketorolac, respectively, these findings demonstrate that the FC-
type cyclization of 3 with (Sa,Ra)-Quinaphos afforded the R-
isomer of 2, and (Ra,Sa)-Quinaphos gave the opposite
stereochemistry to that shown.
7. B. S. Gourlay, P. P. Molesworth, J. H. Ryan, J. A. Smith Tetrahedron
Lett. 47 (2006) 799-801.
8. (a) S. Kumar, S. Krishnakanth, J. Mathew, Z. Pomerantz, J.-P.
Lellouche, S. Ghosh, J. Phys. Chem. C 118 (2014) 2570-2579. (b) A. D.
Josey, E. L. Jenner, J. Org. Chem. 27 (1962) 2466-2470.
9. For acylation of 10, see: (a) J. E. Taylor, M. D. Jones, J. M. J. Williams,
S. D. Bull, Org. Lett. 12 (2010) 5740-5743. For reduction of 11, see: (b)
P. Tao, J. Liang, Y. Jia, Eur. J. Org. Chem. (2014) 5735-5748. (c) G.
Rotas, A. Kimbaris, G. Varvounis, Tetrahedron 67 (2011) 7805-7810.
10. M. Bandini, A. Eichholzer, Angew. Chem. Int. Ed. 48 (2009) 9533-9537.
11. The product 2 is an electron-rich pyrrole, and is sensitive to air and
light.
12. (a) S. M. Silvestre, J. A. R. Salvador, Tetrahedron, 63 (2007) 2439-
2445. (b) S. Sakaguchi, A. Shibamoto, Y. Ishii, Chem. Commun. (2002)
180-181.
Scheme 5. A) Oxidation of (–)-12 leading to (–)-1. B) The structure
of synthetic (+)-2, (+)-12 and (+)-1.
In conclusion, we have developed a novel asymmetric C-C
bond forming cyclization of pyrrolic allyl alcohol 3 with a 2:2:1
combination of AuCl·SMe2, AgOTf and chiral Quinaphos,
which was successfully applied to the asymmetric synthesis of
ketorolac. Using (Sa,Ra)-Quinaphos as the chiral auxiliary,
cyclic (R)-2 was obtained as a key intermediate for the synthesis
of (S/–)-ketorolac. The synthetic procedure (25.8% overall yield
and in 6 steps from a commercially available 7) facilitates the
development of enantiopure (–)-ketorolac and investigations into
the latent biological properties of (–)- and (+)-ketorolac.
13. For HPLC analysis of 12, see supplementary file.
14. The cyclization of 2-benzoyl pyrrole derivative towards 12 was also
examined. However, the cyclization didn’t proceed using a 2:2:1
combination of AuCl·SMe2, AgOTf and 18. For further details, see
supplementary file.
15. (a) R. Noyori, T. Ohkuma, Angew. Chem. Int. Ed. 40 (2001) 40-73. (b)
T. Nishikata, Y. Yamamoto, N. Miyaura, Adv. Synth. Catal. 349 (2007)
1759-1764. (c) J. C. D. Le, B. L. Pagenkopf, J. Org. Chem. 69 (2004)
4177-4180. (d) H. Brunner, W. Pieronczyk, Angew. Chem. Int. Ed.
Engl. 18 (1979) 620-621.
16. (a) T. Pullmann, B. Engendahl, Z. Zhang, M. Hölscher, A. Zanotti-
Gerosa, A. Dyke, G. Franciò, W. Leitner, Chem. Eur. J. 16 (2010) 7517-
7526. (b) S. Burk, G. Franciò, W. Leitner, Chem. Commun. (2005)
3460-3462. (c) G. Franciò, F. Faraone, W. Leitner, Angew. Chem. Int.
Ed. 2000, 39, 1428-1430.
Acknowledgments
We are grateful to Dr Yasuko Okamoto (analysis center in
Tokushima Bunri University) for determining the HRMS. This
study was financially supported by a Grant-in-Aid (No.
23790034) from the MEXT (Ministry of Education, Culture,
Sports, Science, and Technology) of the Japanese Government.
17. (a) D. Grassi, A. Alexakis, Angew. Chem. Int. Ed. 52 (2013) 13642-
13646. (b) G. Borsato, M. Crisma, O. D. Lucchi, V. Lucchini A.
Zambon, Angew. Chem. 117 (2005) 7601-7605. (c) P. H. J. Charlsen, T.
Katsuki, V. S. Martin, K. B. Sharpless, J. Org. Chem. 46 (1981) 3936-
3938.
Supplementary Material
References and notes
Supplementary data to this article can be found online.
1. (a) R. A. Dionne, C. W. Berthold, Crit. Rev. Oral. Biol. Med. 12 (2001)
315-330. (b) E. Mroszczak, D. Comb, M. Chaplin, I. Tsina, T.
Tarnowski, C. Rocha, Y. Tam, A. Boyd, J. Young, L. Depass, J. Clin.
Pharmacol. 36 (1996) 521-539. (c) J. M. Muchowski, Adv. Med. Chem.
1 (1992) 109-135. (d) D. Jung, E. J. Mroszczak, A. Wu, T. L. Ling, H.
Sevelius, L. Bynum, 6 (1989) 62-65. (e) D. Jung, E. Mroszczak, L.
Bynum Eur. J. Clin. Pharmacol 35 (1988) 423-425. (f) A. Guzmán, F.
Yuste, R. A. Toscano, J. M. Young, A. R. Van Horn, J. M. Muchowski,
J. Med. Chem. 29 (1986) 589-591. (g) J. Yee, C. R. Brown, H. Sevelius,
V. Wild, Clin. Pharmacol. Ther. 35 (1984) 284. (h) J. Yee, C. Allison, J.
Koshiver, C. Brown, Pharmacotherapy, 6 (1980) 253-261.
2. (a) B. S. Sekhon J. Mod. Med. Chem. 1 (2013) 10-36. (b) J.-P.
Tillement, B. Testa, F. Brée, Biochem. Pharmacol. 66 (2003) 1123-1126.
(c) G. Lyons, M. Columb, R. C. Wilson, R. V. Johnson, Br. J. Anaesth.