13 S. Carloni, D. E. De Vos, P. A. Jacobs, R. Maggi, G. Sartori and
R. Sartorio, J. Catal., 2002, 205, 199.
14 B. Veldurthy and F. Figueras, Chem. Commun., 2004, 734.
15 B. Veldurthy, J. M. Clacens and F. Figueras, Eur. J. Org. Chem., 2005,
1972.
a methyl-branched, unsaturated hydrocarbon polymer (P14 in
Table 7). The GPC chromatogram of the precipitated polymer is
represented in Fig. 3. The GPC monitoring of the reaction
revealed that the present reaction conditions provided a polymer
in 75% yield with 89% monomer conversion within 4 h.
16 M. L. Kantam, U. Pal, B. Sreedhar and B. M. Choudary, Adv. Synth.
Catal., 2007, 349, 1671.
17 Y.-X. Zhou, S.-G. Liang, J.-L. Song, T.-B. Wu, S.-Q. Hu, H.-Z. Liu and
B.-X. Han, Acta Phys. -Chim. Sin., 2010, 26, 1.
18 M. K. Kiesewetter, M. D. Scholten, N. Kirn, R. L. Weber, J. L. Hedrick
and R. M. Waymouth, J. Org. Chem., 2009, 74, 9490; I. Kaljurand,
A. Kuett, L. Soovaeli, T. Rodima, V. Maeemets, I. Leito and I.
A. Koppel, J. Org. Chem., 2005, 70, 1019.
Conclusion
The herein reported method, which is very easy to implement
and incorporates many features of green chemistry, such as clean
synthesis and the use of less toxic reactants, permits the synthesis
of unsymmetric carbonates from the parent alcohols under
solvent-free conditions with good selectivity. The influence of
several reaction parameters such as amount of DMC, catalyst
loading and reaction time on the reaction efficiency are dis-
cussed. Furthermore, the process opens new ways for a flexible
utilisation of renewable resources for non-food value-added pro-
ducts, since we have shown the transformation of a variety of
renewable alcohols into polycarbonates via ADMET polymeriz-
ation and via classic polycondensation.
19 For selected examples of TBD catalyzed reactions, see: M. P. Coles,
Chem. Commun., 2009, 3659; D. Simoni, M. Rossi, R. Rondanin,
A. Mazzali, R. Baruchello, C. Malagutti, M. Roberti and F. P. Invidata,
Org. Lett., 2000, 2, 3765; D. Simoni, R. Rondanin, M. Morini,
R. Baruchello and F. P. Invidata, Tetrahedron Lett., 2000, 41, 1607;
O. Mahé, D. Frath, I. Dez, F. Marsais, V. Levacher and J.-F. Briere, Org.
Biomol. Chem., 2009, 7, 3648; J. Ma, X. Zhang, N. Zhao, A. S. N. Al-
Arifi, T. Aouak, Z. A. Al-Othman, F. Xiao, W. Wei and Y. Sun, J. Mol.
Catal. A: Chem., 2010, 315, 76; A. Horvath, Tetrahedron Lett., 1996, 37,
4423; W. Ye, J. Xu, C.-T. Tan and C.-H. Tan, Tetrahedron Lett., 2005, 46,
6875; R. Ballini, D. Fiorini, R. Maggi, P. Righi, G. Sartori and
R. Sartorio, Green Chem., 2003, 5, 396; C. Ghobril, C. Sabot,
C. Mioskowski and R. Baati, Eur. J. Org. Chem., 2008, 4104.
20 H. Mutlu and M. A. R. Meier, Macromol. Chem. Phys., 2009, 210, 1019;
O. Türünç and M. A. R. Meier, Macromol. Rapid Commun., 2010, 31,
1822; M. Firdaus, L. Montero de Espinosa and M. A. R. Meier, Macro-
molecules, 2011, 44, 7253.
Acknowledgements
21 N. E. Kamber, W. Jeong, R. M. Waymouth, R. C. Pratt,
B. G. G. Lohmeijer and J. L. Hedrick, Chem. Rev., 2007, 107, 5813; A.
P. Dove, Chem. Commun., 2008, 6446; M. L. Foresti and M. L. Ferreira,
Macromol. Rapid Commun., 2004, 25, 2025.
JR kindly acknowledges Rhône-Alpes region (France) for econo-
mical support.
22 S. Usachev and A. Gridnev, Synth. Commun., 2011, 41, 3683.
23 Z. Jiang, C. Liu and R. A. Gross, Macromolecules, 2008, 41, 4671;
T. Yu, J. Ren, S. Gu and M. Yang, Polym. Int., 2009, 58, 1058.
24 N. Ishida, H. Hasegawa, U. Sasaki, T. Ishikawa, US Pat., 5 391 311,
1995; A. Ansmann, U. Issberner, S. Bruening, B. Jackwerth and
D. Hoffmann, WO Pat., 2003005981, 2003; S. L. Giolito, J. C. Goswami
and E. D. Weil, US Pat., 4 403 056, 1983.
25 H. Mutlu, L. Montero deEspinosa and M. A. R. Meier, Chem. Soc. Rev.,
2011, 40, 1404.
26 J. Vetter and P. Novak, J. Power Sources, 2003, 119–121, 338.
27 J. Tsuji, Palladium Reagents and Catalysts, New Perspectives for the 21st
Century, Willey, UK, Chichester, 2004.
Notes and references
1 P. T. Anastas and S. C. Warner, Green Chemistry. Theory and Practice,
Oxford University Press, New York, 1998.
2 T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis,
Wiley, New York, 3rd edn, 1999.
3 J. P. Parrish, R. N. Salvatore and K. W. Jung, Tetrahedron, 2000, 56,
8207; and references cited therein.
4 Some examples of patents that appeared recently follow: H. Buchold,
J. Eberhadt, U. Wagner and H.-J. Woelk, WO Pat., 2005028415, 2005;
Miyamoto and T. Tayama, JP Pat., 2005126496, 2005; N. Miyake,
T. Watanabe, K. Onishi and A. Sato, WO Pat., 2005000783, 2005;
Y. Sasaki, M. Takehara and M. Ue, JP Pat., 2004010491, 2004;
H. Kawanami, K. Sasaki and Y. Ikushima, JP Pat., 2004107241, 2004;
T. Kanamaru, WO Pat., 2004016577, 2004.
28 M. J. Roberts, M. D. Bentley and J. M. Haris, Adv. Drug Delivery Rev.,
2002, 54, 459.
29 F. J. Liotta, Jr., US Pat., 5,206,408, 1993.
30 H. Beiebl, K. Menzel, A. P. Zeng and W. D. Decker, Appl. Microbiol.
Biotechnol., 1999, 52, 289; H. Huang, C. S. Gong and G. T. Tsao, Appl.
Microbiol. Biotechnol., 2002, 98, 687.
31 http://renewablechemicals.agra-net.com, Verdezyne opens renewable
adipic acid pilot plant in California, 27.01.2012.
5 A.-A. G. Shaikh and S. Siviram, Chem. Rev., 1996, 96, 951, and refer-
ences cited therein.
6 A. F. Hegarty, in Comprehensive Organic Chemistry, ed. I. O. Sutherland,
Pergamon, London, 1979, p. 1067.
7 L. Cotarca, P. Delogu, A. Nardelli and V. Sunjic, Synthesis, 1996, 553.
8 Y. R. Jorapur and D. Y. Chi, J. Org. Chem., 2005, 70, 10774.
9 S.-I. Kim, F. Chu, E. E. Dueno and K. W. Jung, J. Org. Chem., 1999, 64,
4578; R. N. Salvatore, V. L. Flanders, D. Ha and K. W. Jung, Org. Lett.,
2000, 2, 2797.
10 Some selected references follow: P. Tundo and M. Selva, Acc. Chem.
Res., 2002, 35, 706; B. Veldurthy, J. M. Clacens and F. Figueras,
Eur. J. Org. Chem., 2005, 1972; S. Carloni, D. E. De Vos, P. A. Jacobs,
R. Maggi, G. Sartori and R. Sartorio, J. Catal., 2002, 205, 199; P. Tundo,
L. Rossi and A. Loris, J. Org. Chem., 2005, 70, 2219; B. Veldurthy and
F. Figueras, Chem. Commun., 2004, 734; M. Verdecchia, M. Feroci,
L. Palombi and L. Rossi, J. Org. Chem., 2002, 67, 8287; M. O. Bratt and
P. C. Taylor, J. Org. Chem., 2003, 68, 5439; R. N. Salvatore, F. Chu, A.
S. Nagle, E. A. Kapxhiu, R. M. Cross and K. W. Jung, Tetrahedron,
2002, 58, 3329; R. Srivastava, D. Srinivas and P. Ratnasamy, Appl.
Catal., A, 2005, 289, 128.
32 Z. Jiang, C. Liu, W. Xie and R. A. Gross, Macromolecules, 2007, 40,
7934.
33 T. Ariga, T. Takata and T. Endo, Macromolecules, 1997, 30, 737.
34 Some selected examples: A. Rybak and M. A. R. Meier, ChemSusChem,
2008, 1, 542; L. Montero de Espinosa, J. C. Ronda, M. Galia, V. Cadiz
and M. A. R. Meier, J. Polym. Sci., Part A: Polym. Chem., 2009, 47,
5760; O. Kreye, T. Tóth and M. A. R. Meier, Eur. Polym. J., 2011, 47,
1804; O. Türünç and M. A. R. Meier, Green Chem., 2011, 13, 314;
E. Del Rio, G. Lligadas, J. C. Ronda, M. Galià, M. A. R. Meier and
V. Cádiz, J. Polym. Sci., Part A: Polym. Chem., 2011, 49, 518; O. Kreye,
T. Tóth and M. A. R. Meier, Eur. J. Lipid Sci. Technol., 2011, 113, 31.
35 S. H. Hong, D. P. Sanders, C. W. Lee and R. H. Grubbs, J. Am. Chem.
Soc., 2005, 127, 17160.
36 K. Tiefenbacher and J. Mulzer, Angew. Chem., Int. Ed., 2008, 47, 6199;
F. Grellepois, B. Crousse, D. Bonnet-Delpon and J-P. Begue, Org. Lett.,
2005, 7, 5219; K. Mori, Tetrahedron, 2009, 65, 2798.
37 S. J. Hou, X. Gong and W. K. Chan, Macromol. Chem. Phys., 1999, 200,
100.
11 S. Sakai, T. Fujinami and S. Furusawa, Nippon Kagaku Kaishi, 1975,
1789.
12 N. Keller, G. Rebmann and V. Keller, J. Mol. Catal. A: Chem., 2010,
317, 1.
38 J. Konzelman and K. B. Wagener, Macromolecules, 1995, 28, 4686.
This journal is © The Royal Society of Chemistry 2012
Green Chem., 2012, 14, 1728–1735 | 1735