Organic Letters
Letter
followed by heating with para-toluenesulfonic acid produced a
sufficient amount of bussealin E 1 to isolate an analytically pure
sample, albeit in a low yield. While further attempts to improve
this result were not successful, the 1H and 13C NMR spectra of
the synthetic material closely matched those previously
reported for the natural sample (see the SI), confirming its
identity.
ACKNOWLEDGMENTS
■
This research was supported by the EPSRC, BBSRC, MRC,
Wellcome Trust, and ERC (FP7/2007-2013; 279337/DOS).
D.G.T. thanks AstraZeneca for funding. D.R.S. acknowledges
support from a Royal Society Wolfson Research Merit award.
We thank Prof. D. Kingston (Virginia Polytechnic Institute and
State University) for providing a sample of authentic bussealin
E. Data accessibility: all data supporting this study are provided
The concomitant observation of the previously mentioned
byproducts 13 and 14 provides new insights into the possible
biosynthesis of bussealin E (1). These results suggest a
mechanism for the formation of 1 from 2 that proceeds via
intramolecular Michael addition of initially generated benzo-
quinone 13, with formation of the smaller 6-membered
spirocyclic ring (path b, Scheme 4) favored over that of the
7-membered carbocycle (path a, Scheme 4), as evidenced by
the reactions in this report. One previous publication
demonstrates a similar result for an analogous diphenylethane
system.17 When heated strongly in an acidic solution, an
isolated sample of compound 14 did not undergo any change,
with no observed rearrangement or retro-Michael reaction,
suggesting 14 exists as a thermodynamically stable species.
Alongside this observation, the low isolated yield of 1 may
suggest that the reaction relies on an enzyme-catalyzed process
when formed naturally in order to generate appreciable
quantities of the natural product.
In conclusion, we have completed the first reported synthesis
of the unique cycloheptadibenzofuran natural product,
bussealin E. The final intermediate in the synthesis,
diphenylpropane 2, was prepared in 11 steps, in its longest
linear sequence, in an overall 14% yield, featuring a key sp2−sp3
Hiyama coupling between a vinyldisiloxane and a benzylic
bromide. The final bioinspired cyclization to deliver bussealin E
only proceeded in low yield, with the observed byproducts
suggesting a mechanism that proceeds via Michael addition of
the initially formed 1,4-benzoquinone 13 with selectivity for the
undesired 6-membered ring as seen in compound 14. This low
yield could suggest that the reaction relies on an enzyme-
catalyzed process when formed naturally. With a route to
bussealin E determined, further synthetic studies and biological
evaluation of this novel scaffold are underway and will be
reported in due course.
REFERENCES
■
(1) Pan, E.; Harinantenaina, L.; Brodie, P. J.; Miller, J. S.;
Callmander, M. W.; Rakotonandrasana, S.; Rakotobe, E.; Rasamison,
V. E.; Kingston, D. G. I. J. Nat. Prod. 2010, 73, 1792−1795.
(2) Frye, E. C.; O’ Connor, C. J.; Twigg, D. G.; Elbert, B.; Laraia, L.;
Hulcoop, D. G.; Venkitaraman, A. R.; Spring, D. R. Chem. - Eur. J.
2012, 18, 8774−8779.
(3) (a) Sore, H. F.; Boehner, C. M.; Laraia, L.; Logoteta, P.;
Prestinari, C.; Scott, M.; Williams, K.; Galloway, W. R. J. D.; Spring, D.
R. Org. Biomol. Chem. 2011, 9, 504−515. (b) Sore, H. F.; Boehner, C.
M.; MacDonald, S. J. F.; Norton, D.; Fox, D. J.; Spring, D. R. Org.
Biomol. Chem. 2009, 7, 1068−1071. (c) Boehner, C. M.; Frye, E. C.;
O’Connell, K. M. G.; Galloway, W. R. J. D.; Sore, H. F.; Garcia-
Dominguez, P.; Norton, D.; Hulcoop, D. G.; Owen, M.; Turner, G.;
Crawford, C.; Horsley, H.; Spring, D. R. Chem. - Eur. J. 2011, 17,
13230−13239.
(4) Krishna Mohan, K. V. V.; Narender, N. Synthesis 2012, 44, 15−
26.
(5) Denmark, S. E.; Wang, Z. Org. Lett. 2001, 3, 1073−1076.
(6) (a) Yoshida, J.; Tamao, K.; Yamamoto, H.; Kakui, T.; Uchida, T.;
Kumada, M. Organometallics 1982, 1, 542−549. (b) Denmark, S. E.;
Choi, J. Y. J. Am. Chem. Soc. 1999, 121, 5821−5822.
(7) Taylor, W. I.; Battersby, A. R. Oxidative Coupling of Phenols; M.
Dekker, Inc.: New York, 1967.
(8) Kramer, B.; Frohlich, R.; Waldvogel, S. R. Eur. J. Org. Chem.
̈
2003, 2003, 3549−3554.
(9) Takeya, T.; Doi, H.; Ogata, T.; Otsuka, T.; Okamoto, I.; Kotani,
E. Tetrahedron 2004, 60, 6295−6310.
(10) Kupchan, S. M.; Dhingra, O. P.; Kim, C.-K. J. Org. Chem. 1978,
43, 4076−4081.
(11) Feldman, K. S.; Ensel, S. M.; Minard, R. D. J. Am. Chem. Soc.
1994, 116, 1742−1745.
(12) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104,
6217−6254.
(13) Ohishi, T.; Kojima, T.; Matsuoka, T.; Shiro, M.; Kotsuki, H.
Tetrahedron Lett. 2001, 42, 2493−2496.
(14) (a) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523−
ASSOCIATED CONTENT
■
2584. (b) Pouyseg
66, 2235−2261.
(15) Bohmdorfer, S.; Patel, A.; Gille, L.; Netscher, T.; Mereiter, K.;
Rosenau, T. Curr. Org. Synth. 2013, 10, 165−168.
́
u, L.; Deffieux, D.; Quideau, S. Tetrahedron 2010,
S
* Supporting Information
The Supporting Information is available free of charge on the
(16) (a) Jempty, T. C.; Miller, L. L.; Mazur, Y. J. Org. Chem. 1980,
45, 749−751. (b) Jempty, T. C.; Gogins, K. A. Z.; Mazur, Y.; Miller, L.
L. J. Org. Chem. 1981, 46, 4545−4551.
(17) Thangaraj, S.; Tsao, W.-S.; Luo, Y.-W.; Lee, Y.-J.; Chang, C.-F.;
Lin, C.-C.; Uang, B.-J.; Yu, C.-C.; Guh, J.-H.; Teng, C.-M. Tetrahedron
2011, 67, 6166−6172.
Experimental details and characterization data for all
1
products including H and 13C NMR spectra (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
C
Org. Lett. XXXX, XXX, XXX−XXX