Paper
Journal of Materials Chemistry B
The cytotoxicity of the illuminated photoacid (SP) is not
assessed directly, because the entire monolayer cultured cells
die within 30 min in such a low pH (3.3) condition. It is difficult
to differentiate whether the cell death is caused by low pH or the
cytotoxicity of SP. But, previous studies have shown that 8-
methoxy-6-nitro-BIPS (SP derivative) did not affect the cellular
survival of THP-1, AGS, and A549 cells for 24 h at concentration
6 C. Y. Cheng, W. H. Sheng, J. T. Wang, Y. C. Chen and
S. C. Chang, Int. J. Antimicrob. Agents, 2010, 35, 297–300.
7 S. J. Wallace, J. Li, R. L. Nation, C. R. Rayner, D. Taylor,
D. Middleton, R. W. Milne, K. Coulthard and
J. D. Turnidge, Antimicrob. Agents Chemother., 2008, 52,
1159–1161.
8 M. E. Falagas, P. L. Rafailidis, S. K. Kasiakou, P. Hatzopoulou
and A. Michalopoulos, Clin. Microbiol. Infect., 2006, 12, 1227–
1230.
ꢁ
4
ꢁ9
26
ranging from 10 to 10 M. Photochromic molecules from
the SP family also have no effect on the cellular survival of HEK-
27
2
93 cells. Compared to these SP derivatives reported before,
9 B. Lin, C. Zhang and X. Xiao, J. Vet. Pharmacol. Ther., 2005,
28, 349–354.
our SP molecule has a similar structure except for lacking a
+
NH3 group, indicating a much lower cytotoxicity than those 10 M. E. Falagas, M. Rizos, I. A. Bliziotis, K. Rellos,
reported SP derivatives. S. K. Kasiakou and A. Michalopoulos, BMC Infect. Dis.,
005, 5, 1.
2
4
Conclusions
11 K. R. Peck, M. J. Kim, J. Y. Choi, H. S. Kim, C. I. Kang,
Y. K. Cho, D. W. Park, H. J. Lee, M. S. Lee and K. S. Ko,
J. Med. Microbiol., 2012, 61, 353–360.
A strong bactericidal activity is observed by combining the
visible light illumination of photoacid and colistin. The neph-
rotoxicity of colistin can be drastically decreased by reducing
the MIC of colistin when combined with a photoacid, indicating
a promising approach in MDR bacteria killing. In the future,
photoacids may be incorporated into the structure of a drug
carrier. Visible light irradiation will produce a temporary and
localized pH drop that increases the bactericidal activity of
the drug.
1
2 M. Hornsey, C. Longshaw, L. Phee and D. W. Wareham,
Antimicrob. Agents Chemother., 2012, 56, 3080–3085.
3 P. J. Bergen, B. T. Tsuji, J. B. Bulitta, A. Forrest, J. Jacob,
H. E. Sidjabat, D. L. Paterson, R. L. Nation and J. Li,
Antimicrob. Agents Chemother., 2011, 55, 5685–5695.
4 Z. Erdogan-Yildirim, A. Burian, M. Mana and M. Zeitlinger,
Res. Microbiol., 2011, 162, 249–252.
1
1
1
1
1
1
1
2
2
5 H. Zhu, C. A. Hart, D. Sales and N. B. Roberts, J. Med.
Microbiol., 2006, 55, 1265–1270.
6 F. May, M. Peter, A. Hutten, L. Prodi and J. Mattay, Chemistry,
Acknowledgements
2012, 18, 814–821.
This work is partly supported by a CAREER award from National
Science Foundations and also grants from the National Natural
Science Foundation of China (30900348), Natural Science
Foundation of Chongqing (CSTC2013JJB0117), and Third Mili-
tary Medical University (2010XZH08). Supports from the Air
Force Office of Scientic Research and National Science Foun-
dation EAGER Program are gratefully acknowledged.
7 R. Tong, H. D. Hemmati, R. Langer and D. S. Kohane, J. Am.
Chem. Soc., 2012, 134, 8848–8855.
8 J. Folling, S. Polyakova, V. Belov, A. van Blaaderen,
M. L. Bossi and S. W. Hell, Small, 2008, 4, 134–142.
9 R. M. Nunes, M. Pineiro and L. G. Arnaut, J. Am. Chem. Soc.,
009, 131, 9456–9462.
0 Z. Shi, P. Peng, D. Strohecker and Y. Liao, J. Am. Chem. Soc.,
011, 133, 14699–14703.
1 D. Emerson and C. Moyer, Appl. Environ. Microbiol., 1997, 63,
4784–4792.
2
2
Notes and references
1
2
3
4
N. Aoki, K. Tateda, Y. Kikuchi, S. Kimura, C. Miyazaki,
Y. Ishii, Y. Tanabe, F. Gejyo and K. Yamaguchi, 22 H. G. Prentice, I. M. Hann, B. Nazareth, P. Paterson,
J. Antimicrob. Chemother., 2009, 63, 534–542.
V. Pintado, L. G. S. Miguel, F. Grill, B. Mejia, J. Cobo,
J. Fortun, P. Martin-Davila and S. Moreno, J. Infect., 2008, 23 P. J. Bergen, J. Li, R. L. Nation, J. D. Turnidge, K. Coulthard
6, 185–190.
A. Walkty, M. DeCorby, K. Nichol, J. A. Karlowsky,
D. J. Hoban and G. G. Zhanel, Antimicrob. Agents 24 L. M. Lim, N. Ly, D. Anderson, J. C. Yang, L. Macander,
A. Bhamra and C. C. Kibbler, Br. J. Haematol., 2001, 115,
46–52.
5
and R. W. Milne, J. Antimicrob. Chemother., 2008, 61, 636–
642.
Chemother., 2009, 53, 4924–4926.
M. E. Falagas, P. I. Rafailidis, E. Ioannidou, V. G. Alexiou,
A. Jarkowski, A. Forrest, J. B. Bulitta and B. T. Tsuji,
Pharmacotherapy, 2010, 30, 1279–1291.
D. K. Matthaiou, D. E. Karageorgopoulos, A. Kapaskelis, 25 J. M. Yousef, G. Chen, P. A. Hill, R. L. Nation and J. Li,
D. Nikita and A. Michalopoulos, Int. J. Antimicrob. Agents,
010, 35, 194–199.
J. Li, R. L. Nation, J. D. Turnidge, R. W. Milne, K. Coulthard,
J. Antimicrob. Chemother., 2012, 67, 452–459.
26 D. Movia, A. Prina-Mello, Y. Volkov and S. Giordani, Chem.
Res. Toxicol., 2010, 23, 1459–1466.
2
5
C. R. Rayner and D. L. Paterson, Lancet Infect. Dis., 2006, 6, 27 J. R. Nilsson, S. M. Li, B. Onfelt and J. Andreasson, Chem.
89–601.
Commun., 2011, 47, 11020–11022.
5
This journal is ª The Royal Society of Chemistry 2013
J. Mater. Chem. B, 2013, 1, 997–1001 | 1001