ChemComm
Communication
6 (a) J. M. Roberts, B. M. Fini, A. A. Sarjeant, O. K. Farha, J. T. Hupp and
K. A. Scheidt, J. Am. Chem. Soc., 2012, 134, 3334–3337; (b) D. Farrusseng,
S. Aguado and C. Pinel, Angew. Chem., Int. Ed., 2009, 48, 7502–7513;
(c) M. Ranocchiari and J. A. van Bokhoven, Phys. Chem. Chem. Phys.,
2011, 13, 6388–6396; (d) N. V. Maksimchuk, K. A. Kovalenko, V. P. Fedin
and O. A. Kholdeeva, Adv. Synth. Catal., 2010, 352, 2943–2948;
(e) A. Dhakshinamoorthy, M. Alvaro and H. Garcia, Chem. Commun.,
2012, 48, 11275–11288; ( f ) A. Dhakshinamoorthy and H. Garcia, Chem.
Soc. Rev., 2012, 41, 5262–5284.
possesses a mesoporous structure with a considerable specific sur-
face area. This highlights the significance of MOF based materials.
On the basis of the mechanistic aspects described above, we
tentatively propose the following mechanism: irradiated light is
absorbed partly by the MIL-101 photosensitizer unit (because of
the absorbance differences) and mainly by CdS. The redox
potential (Cr3+/Cr2+) of MIL-101 was +0.49 V vs. NHE (normal
hydrogen electrode),25 and the reduction potential of the excited
photosensitizer unit was calculated to be À1.57 V vs. NHE.26 And
the CdS valence and conduction band edges have been reported
as +1.88 and À0.52 V, respectively, vs. NHE.27 After the absorption
´
7 (a) C. G. Silva, A. Corma and H. Garcıa, J. Mater. Chem., 2010,
20, 3141; (b) C. H. Hendon, D. Tiana and A. Walsh, Phys. Chem.
Chem. Phys., 2012, 14, 13120–13132; (c) J.-L. Wang, C. Wang and
W. Lin, ACS Catal., 2012, 2, 2630–2640.
8 C. Wang, Z. Xie, K. E. deKrafft and W. Lin, J. Am. Chem. Soc., 2011,
133, 13445–13454.
9 C. Gomes Silva, I. Luz, F. X. Llabres i Xamena, A. Corma and
H. Garcia, Chem.–Eur. J., 2010, 16, 11133–11138.
10 Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu and Z. Li, Angew.
Chem., Int. Ed., 2012, 51, 3364–3367.
11 Y. Kataoka, Y. Miyazaki, K. Sato, T. Saito, Y. Nakanishi, Y. Kiatagwa,
T. Kawakami, M. Okumura, K. Yamaguchi and W. Mori, Supramol.
Chem., 2011, 23, 287–296.
12 J. Gascon, M. D. Hernandez-Alonso, A. R. Almeida, G. P. van Klink,
F. Kapteijn and G. Mul, ChemSusChem, 2008, 1, 981–983.
13 H. Khajavi, J. Gascon, J. M. Schins, L. D. A. Siebbeles and
F. Kapteijn, J. Phys. Chem. C, 2011, 115, 12487–12493.
14 Y. Miyazaki, Y. Kataoka and W. Mori, J. Nanosci. Nanotechnol., 2012,
12, 439–445.
15 W. W. Zhan, Q. Kuang, J. Z. Zhou, X. J. Kong, Z. X. Xie and
L. S. Zheng, J. Am. Chem. Soc., 2013, 135, 1926–1933.
16 M. Muller, X. Zhang, Y. Wang and R. A. Fischer, Chem. Commun.,
2009, 119–121.
of visible light by MIL-101(CrIII), an excited state of MIL-101(CrIII*
)
is formed. Electrons are then transferred from MIL-101(CrIII*) to
the conduction band of CdS and then to the loaded Pt particles
where the protons are reduced to form molecular H2. At the same
time, the reduced state MIL-101(Cr) species return to the ground
state, accomplishing a complete water reduction reaction. Addi-
tionally, the CdS can also be excited by absorbing photons of light
having energy exceeding its band gap and then transferring
electrons directly to the Pt to produce H2.
The enhancement of the photocatalytic activity of CdS after
MOF hybridization can be attributed to the fact that MIL-101 has a
large specific surface area which allows effective dispersion of
embedded CdS particles. This provides more active adsorption
sites and photocatalytic reaction centers which favor enhanced
photocatalytic activity. Moreover, the sensitization of CdS by
MIL-101 is effective and superior to bare CdS, which makes it a
photocatalyst with good visible light harvesting capability.
In summary, we have demonstrated for the first time that the
embedding of CdS on MOFs significantly increases the photo-
catalytic efficiency of CdS. In the context of their application to
visible-light-promoted photocatalytic hydrogen production, MOFs
possess great flexibility in terms of framework design because the
choice of selecting the suitable host MOF depending on the linker
(organic molecules), the connector (metal atoms) or the both28
can be widely varied.
¨
17 S. Hermes, F. Schroder, S. Amirjalayer, R. Schmid and R. A. Fischer,
J. Mater. Chem., 2006, 16, 2464.
18 (a) G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour,
S. Surble and I. Margiolaki, Science, 2005, 309, 2040–2042;
(b) A. Henschel, K. Gedrich, R. Kraehnert and S. Kaskel, Chem.
Commun., 2008, 4192–4194; (c) L. Bromberg, Y. Diao, H. Wu,
S. A. Speakman and T. A. Hatton, Chem. Mater., 2012, 24,
1664–1675; (d) N. V. Maksimchuk, O. V. Zalomaeva, I. Y. Skobelev,
K. A. Kovalenko, V. P. Fedin and O. A. Kholdeeva, Proc. R. Soc.
London, Ser. A, 2012, 468, 2017–2034.
19 A. Modrow, D. Zargarani, R. Herges and N. Stock, Dalton Trans.,
2012, 41, 8690–8696.
20 X. Si, L. Sun, F. Xu, C. Jiao, F. Li, S. Liu, J. Zhang, L. Song, C. Jiang,
S. Wang, Y. Liu and Y. Sawada, Int. J. Hydrogen Energy, 2011, 36,
6698–6704.
21 (a) H. Harada, T. Sakata and T. Ueda, J. Am. Chem. Soc., 1985, 107,
1773–1774; (b) X. Zong, G. Wu, H. Yan, G. Ma, J. Shi, F. Wen,
L. Wang and C. Li, J. Phys. Chem. C, 2010, 114, 1963–1968;
(c) W. Zhang, Y. Wang, Z. Wang, Z. Zhong and R. Xu, Chem.
Commun., 2010, 46, 7631–7633.
22 (a) N. Bao, L. Shen, T. Takata and K. Domen, Chem. Mater., 2007, 20,
110–117; (b) M. Sathish, B. Viswanathan and R. Viswanath, Int. J.
Hydrogen Energy, 2006, 31, 891–898.
This work was supported by the National Natural Science
Foundation of China (NSFC-YN 21063016, U1033603) and the
Program for Innovative Research Teams (in Science and Technology)
at the University of Yunnan Province.
Notes and references
23 (a) M. Alvaro, E. Carbonell, B. Ferrer, F. X. L. i Xamena and
H. Garcia, Chem.–Eur. J., 2007, 13, 5106–5112; (b) B. Civalleri,
1 (a) K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue and
K. Domen, Nature, 2006, 440, 295; (b) F. E. Osterloh, Chem. Mater.,
2007, 20, 35–54; (c) A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38,
253–278; (d) R. Abe, J. Photochem. Photobiol., C, 2010, 11, 179–209;
(e) X. Chen, S. Shen, L. Guo and S. S. Mao, Chem. Rev., 2010,
110, 6503; ( f ) A. Kubacka, M. Fernandez-Garcia and G. Colon, Chem.
Rev., 2012, 112, 1555–1614.
¨
F. Napoli, Y. Noel, C. Roetti and R. Dovesi, CrystEngComm, 2006,
8, 364; (c) H. Li, M. Eddaoudi, M. O’Keeffe and O. M. Yaghi, Nature,
1999, 402, 276–279.
˜
24 J. Juan-Alcaniz, J. Gascon and F. Kapteijn, J. Mater. Chem., 2012,
22, 10102.
25 P. M. P. de Sousa, R. Grazina, A. D. S. Barbosa, B. de Castro,
J. J. G. Moura, L. Cunha-Silva and S. S. Balula, Electrochim. Acta,
2013, 87, 853–859.
2 X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang and C. Li, J. Am.
Chem. Soc., 2008, 130, 7176–7177.
26 K. Sekizawa, K. Maeda, K. Domen, K. Koike and O. Ishitani, J. Am.
Chem. Soc., 2013, 135, 4596–4599.
3 H. Yan, J. Yang, G. Ma, G. Wu, X. Zong, Z. Lei, J. Shi and C. Li,
J. Catal., 2009, 266, 165–168.
27 X. Yong; and M. A. A. Schoonen, Am. Mineral., 2000, 85, 543–556.
28 Y. Kataoka, K. Sato, Y. Miyazaki, K. Masuda, H. Tanaka, S. Naito and
W. Mori, Energy Environ. Sci., 2009, 2, 397–400.
4 S. Shen and L. Guo, Mater. Res. Bull., 2008, 43, 437–446.
5 Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan and J. R. Gong, J. Am.
Chem. Soc., 2011, 133, 10878–10884.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.