Page 7 of 9
Journal Name
RSC Advances
ARTICLE
lamp (Ushio Optical, Model X SX-UID 500X AMQ) through a
colour filter glass (Asahi Techno Glass L39) transmitting λ >
340 nm at room temperature. After 1 min stirring in the dark,
gas in a headspace was analysed by Shimadzu GC-14B gas
chromatography (detector: TCD, column temperature: 50 ºC,
column: active carbon with the particle size 60-80 mesh, carrier
gas: N2 gas) to determine the amount of evolved H2.
5
6
A. K. Hussein, Renewable Sustainable Energy Rev., 2015, 42, 460-
476.
DOI: 10.1039/C5RA04838A
Maravelias, Energy Environ. Sci., 2015, 8, 126-157.
J. M. Thomas, Energy Environ. Sci., 2014, 7, 19-20.
S. Berardi, S. Drouet, L. Francas, C. Gimbert-Surinach, M. Guttentag,
C. Richmond, T. Stoll and A. Llobet, Chem. Soc. Rev., 2014, 43,
7501-7519.
7
8
4.12 H2 evolution with QuPh•–NA in the dark39,41
Typically, a mixed solution (2.0 mL) of a deaerated phthalate
9
Z. Han and R. Eisenberg, Acc. Chem. Res., 2014, 47, 2537–2544.
buffer (pH 4.5) and MeCN [1:1 (v/v)] containing QuPh+–NA 10 A. J. Cowan and J. R. Durrant, Chem. Soc. Rev., 2013, 42, 2281-2293.
(0.44 mM) and NADH (1.0 mM) was photoirradiated for 5 min 11 D. G. Nocera, Acc. Chem. Res., 2012, 45, 767–776.
with a Xe lamp through a colour filter glass transmitting λ > 12 M. Wang, L. Chen and L. Sun, Energy Environ. Sci., 2012, 5, 6763-
340 nm. Formation of QuPh•–NA was confirmed by the change
6778.
of UV-vis absorption spectra. Next, a deaerated aqueous 13 H. B. Gray, Nat. Chem., 2009, 1, 7–7.
solution containing Ni-Cu/MOx (0.1 mg) was added to the 14 V. Artero and M. Fontecave, Chem. Soc. Rev., 2013, 42, 2338–2356.
photoirradiated solution in the dark with stirring. The 15 J. J. Concepcion, R. L. House, J. M. Papanikolas and T. J. Meyer,
absorbance change at 420 nm due to QuPh•–NA was
Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 15560–15564.
continuously monitored by UV-vis spectrometer.29 Evolved H2 16 A. K. Vannucci, L. Alibabaei, M. D. Losego, J. J. Concepcion, B.
in the headspace of a reaction vial was intermittently quantified
by a gas chromatograph.
Kalanyan, G. N. Parsons and T. J. Meyer, Proc. Natl. Acad. Sci. U. S.
A., 2013, 110, 20918–20922.
17 A. J. Cowan and J. R. Durrant, Chem. Soc. Rev., 2013, 42, 2281–
2293.
Acknowledgements
This work was supported by Grants-in-Aid (Nos. 24350069 and
25600025) for Scientific Research from Japan Society for the
Promotion of Science (JSPS), an ALCA project from Japan
Science and Technology Agency (JST). We sincerely
acknowledge the Research Centre for Ultra-Precision Science
& Technology, Osaka University for TEM measurements.
18 S. Fukuzumi, Y. Yamada, T. Suenobu, K. Ohkubo and H. Kotani,
Energy Environ. Sci., 2011, 4, 2754-2766.
19 M. D. Kärkäs, E. V. Johnston, O. Verho and B. Åakermark, Acc.
Chem. Res., 2014, 47, 100–111.
20 J. R. McKone, N. S. Lewis and H. B. Gray, Chem. Mater., 2014, 26,
407–414.
21 H. Ozawa and K. Sakai, Chem. Commun., 2011, 47, 2227–2242.
22 M. Kobayashi, S. Masaoka and K. Sakai, Angew. Chem., Int. Ed.,
2012, 51, 7431–7434.
Notes and references
Department of Material and Life Science, Graduate School of
a
Engineering, Osaka University, ALCA and SENTAN, Japan Science and
Technology Agency (JST), Suita, Osaka 565-0871, Japan
E-mail: fukuzumi@chem.eng.osaka-u.ac.jp; yamada@chem.eng.osaka-
u.ac.jp
23 N. Wang, M. Wang, L. Chen and L. Sun, Dalton Trans., 2013, 42,
12059–12071.
24 M. Grätzel, Acc. Chem. Res., 1981, 14, 376–384.
25 Y. Yamada, K. Yano and S. Fukuzumi, Aust. J. Chem., 2012, 65,
1573–1581.
b
Department of Applied Chemistry & Bioengineering, Graduate School
of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku,
Osaka, 558-8585, Japan
26 H. Kotani, K. Ohkubo, Y. Takai and S. Fukuzumi, J. Phys. Chem. B,
2006, 110, 24047–24053.
c
Faculty of Science and Engineering, Meijo University, ALCA and
27 H. Kotani, T. Ono, K. Ohkubo and S. Fukuzumi, Phys. Chem. Chem.
Phys., 2007, 9, 1487–1492.
SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi
468-0073, Japan
d
28 H. Kotani, R. Hanazaki, K. Ohkubo, Y, Yamada and S. Fukuzumi,
Chem.–Eur. J., 2011, 17, 2777–2785.
Department of Bioinspired Science, Ewha Womans University, Seoul
120-750, Korea
29 Y. Yamada, T. Miyahigashi, H. Kotani, K. Ohkubo and S. Fukuzumi,
J. Am. Chem. Soc., 2011, 133, 16136–16145.
†
Electronic Supplementary Information (ESI) available: DLS
30 Y. Yamada, T. Miyahigashi K. Ohkubo and S. Fukuzumi, Phys.
Chem. Chem. Phys., 2012, 14, 10564–10571.
measurement (Fig. S1) TEM images (Figs. S2 and 3) See
DOI: 10.1039/b000000x/
31 Y. Yamada, H. Tadokoro and S. Fukuzumi, RSC Adv., 2013, 3,
25677–25680.
1
2
3
S. Dunn, in Encyclopedia of Energy, Elsevier Inc., 2004, vol. 3, pp.
241-252.
32 Y. Yamada, A. Nomura, H. Tadokoro and S. Fukuzumi, Catal. Sci.
Technol., 2015, 5, 428–437.
M. Momirlan and T. N. Veziroglub, Int. J. Hydrogen Energy, 2005,
30, 795-802
33 S. Fukuzumi, H. Kotani, K. Ohkubo, S. Ogo, N. V. Tkachenko and H.
Lemmetyinen, J. Am. Chem. Soc., 2004, 126, 1600–1601.
34 H. Kotani, K. Ohkubo, T. and S. Fukuzumi, Faraday Discuss., 2012,
155, 89–102.
The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D
Needs, 2004, U.S. National Research Council and U.S. National
Academy of Engineering.
4
G. Laurenczy, Encyclopedia of Catalysis, ed. I. T. Horvath, Wiley–
Interscience, Hoboken, NJ, 2010.
35 S. Fukuzumi, K. Ohkubo and T. Suenobu, Acc. Chem. Res., 2014, 47,
1455–1464.
This journal is © The Royal Society of Chemistry 2012
J. Name., 2012, 00, 1-3 | 7