Organometallics
Communication
generating H gas, then occurs spontaneously without loss of
2006, 25, 3345−3351. (h) Bhugun, I.; Lexa, D.; Savea
́
nt, J.-M. J. Am.
2
−
Chem. Soc. 1996, 118, 1769−1776.
CO from the complex. Further, HCO can directly react with
2
3
2
+
(4) (a) Kang, P.; Cheng, C.; Chen, Z.; Schauer, C. K.; Meyer, T. J.;
Brookhart, M. J. Am. Chem. Soc. 2012, 134, 5500−5503. (b) Ram-
akrishnan, S.; Waldie, K. M.; Warnke, I.; De Crisci, A. G.; Batista, V. S.;
Waymouth, R. M.; Chidsey, C. E. D. Inorg. Chem. 2016, 55, 1623−
[
1-OH2] through a dehydration reaction to give an
“activated” CO in the form of a carbamate moiety. These
2
results are significant, as they represent a spontaneous
reduction of CO without high-pressure H , electrochemical
2
2
1
632. (c) Tamaki, Y.; Morimoto, T.; Koike, K.; Ishitani, O. Proc. Natl.
Acad. Sci. U. S. A. 2012, 109, 15673−15678.
5) (a) Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.;
potential, or strong reducing agents. We are continuing to study
the initial reduction reaction to better understand this
mechanism and its potential to operate catalytically for reduced
carbon products. Scheme 2 may also suggest a pathway to store
H if formal addition of H O to 3 can generate a Ru−
(
DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J.
A.; Kerfeld, C. A.; Morris, R. H.; Peden, C. H. F.; Portis, A. R.;
Ragsdale, S. W.; Rauchfuss, T. B.; Reek, J. N. H.; Seefeldt, L. C.;
Thauer, R. K.; Waldrop, G. L. Chem. Rev. 2013, 113, 6621−6658.
(b) Rezayee, N. M.; Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2015,
2
2
bicarbonate complex. This overall scheme simplifies to a water-
2
+
splitting reaction that is catalytic in [1-OH2] and CO (H O
2
2
1
37, 1028−1031. (c) Barton Cole, E.; Lakkaraju, P. S.; Rampulla, D.
M.; Morris, A. J.; Abelev, E.; Bocarsly, A. B. J. Am. Chem. Soc. 2010,
32, 11539−11551.
6) (a) Wang, W.-H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.;
+
E → O = E + H ) and provides a unique method of H2
2
production from water. Initial results indicate that addition of
1
(
strong acids remove the CO from 3, although studies remain
2
ongoing in this area.
Fujita, E. Chem. Rev. 2015, 115, 12936−12973. (b) Hull, J. F.; Himeda,
Y.; Wang, W.-H.; Hashiguchi, B.; Periana, R.; Szalda, D. J.;
Muckerman, J. T.; Fujita, E. Nat. Chem. 2012, 4, 383−388.
ASSOCIATED CONTENT
Supporting Information
■
*
S
(7) (a) Grasemann, M.; Laurenczy, G. Energy Environ. Sci. 2012, 5,
8
171−8181. (b) Boddien, A.; Gar
Mellmann, D.; Jackstell, R.; Junge, H.; Beller, M. Angew. Chem., Int. Ed.
011, 50, 6411−6414.
8) Mondal, B.; Song, J.; Neese, F.; Ye, S. Curr. Opin. Chem. Biol.
̈
tner, F.; Federsel, C.; Sponholz, P.;
2
(
Experimental details, NMR spectra, IR spectra, and
crystal structure data. (PDF)
Crystallographic data (CIF)
2015, 25, 103−109.
(9) Gambarotta, S.; Arena, F.; Floriani, C.; Zanazzi, P. F. J. Am. Chem.
Soc. 1982, 104, 5082−5092.
(10) Krogman, J. P.; Foxman, B. M.; Thomas, C. M. J. Am. Chem. Soc.
2
011, 133, 14582−14585.
AUTHOR INFORMATION
Author Contributions
These authors contributed equally to this work.
Notes
The authors declare no competing financial interest.
■
(11) Angamuthu, R.; Byers, P.; Lutz, M.; Spek, A. L.; Bouwman, E.
Science 2010, 327, 313−315.
(12) Vogt, M.; Gargir, M.; Iron, M. A.; Diskin-Posner, Y.; Ben-David,
Y.; Milstein, D. Chem. - Eur. J. 2012, 18, 9194−9197.
(13) Huff, C. A.; Kampf, J. W.; Sanford, M. S. Organometallics 2012,
*
†
3
(
1, 4643−4645.
14) Flowers, S. E.; Cossairt, B. M. Organometallics 2014, 33, 4341−
4344.
(
15) Paparo, A.; Silvia, J. S.; Kefalidis, C. E.; Spaniol, T. P.; Maron, L.;
ACKNOWLEDGMENTS
We would like to thank the ACS Petroleum Research Fund
DNI) and the David and Lucile Packard Foundation for
support of this work. Analytical data were obtained from the
CENTC Elemental Analysis Facility at the University of
Rochester, funded by NSF CHE-0650456. The authors thank
Prof. Werner Kaminski for assistance with solving crystal
structures, Benjamin Glassy for assistance in obtaining IR
spectra, Jennifer Stein for fluorescence spectra, and Dr. Jared
Silvia for helpful discussions.
Okuda, J.; Cummins, C. C. Angew. Chem., Int. Ed. 2015, 54, 9115−
■
(
9
119.
(16) Looney, A.; Han, R.; McNeill, K.; Parkin, G. J. Am. Chem. Soc.
1
(
(
993, 115, 4690−4697.
17) Sattler, W.; Parkin, G. Catal. Sci. Technol. 2014, 4, 1578−1584.
18) Chatterjee, D.; Jaiswal, N.; Banerjee, P. Eur. J. Inorg. Chem.
2
014, 2014, 5856−5859.
(19) Aresta, M.; Dibenedetto, A.; Tommasi, I. Eur. J. Inorg. Chem.
2001, 2001, 1801−1806.
(20) (a) Chakraborty, S.; Blacque, O.; Berke, H. Dalton Trans. 2015,
4
2
4, 6560−6570. (b) San
́
chez-Nieves, J.; Royo, P. J. Organomet. Chem.
001, 621, 299−303.
REFERENCES
■
(
5
1) Barelli, L.; Bidini, G.; Gallorini, F.; Servili, S. Energy 2008, 33,
54−570.
(
2) (a) Fujita, E.; Goldman, A. S. Inorg. Chem. 2015, 54, 5040−5042.
(
b) Morris, A. J.; Meyer, G. J.; Fujita, E. Acc. Chem. Res. 2009, 42,
1
983−1994. (c) Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.;
Sathrum, A.; Kubiak, C. P. Annu. Rev. Phys. Chem. 2012, 63, 541−569.
3) (a) Chen, Z.; Chen, C.; Weinberg, D. R.; Kang, P.; Concepcion,
J. J.; Harrison, D. P.; Brookhart, M. S.; Meyer, T. J. Chem. Commun.
011, 47, 12607−12609. (b) Fujita, E.; Furenlid, L. R.; Renner, M. W.
(
2
J. Am. Chem. Soc. 1997, 119, 4549−4550. (c) Fisher, B. J.; Eisenberg,
R. J. Am. Chem. Soc. 1980, 102, 7361−7363. (d) Hawecker, J.; Lehn, J.-
M.; Ziessel, R. Helv. Chim. Acta 1986, 69, 1990−2012. (e) Smieja, J.
M.; Kubiak, C. P. Inorg. Chem. 2010, 49, 9283−9289. (f) Bourrez, M.;
Molton, F.; Chardon-Noblat, S.; Deronzier, A. Angew. Chem., Int. Ed.
2
011, 50, 9903−9906. (g) Raebiger, J. W.; Turner, J. W.; Noll, B. C.;
Curtis, C. J.; Miedaner, A.; Cox, B.; DuBois, D. L. Organometallics
D
Organometallics XXXX, XXX, XXX−XXX