10.1002/anie.201712679
Angewandte Chemie International Edition
COMMUNICATION
[4]
G. W. Crabtree, M. S. Dresselhaus, M. V. Buchanan, Phys. Today 2004,
57, 39–44.
were supported by experimental nuclear resonant inelastic X-Ray
scattering, both highlighting the importance of defects for the
increased HER activity. Furthermore, this observation suggests
that Fe-rich areas are less stable due to increased susceptibility
to corrosion and thus might lead to higher HER activity on the ex-
perimental (i.e., s to min) timescale due to a facilitation of the sub-
stitutional sulfur/hydrogen replacement.
In conclusion, we have utilized SECCM to unveil the struc-
tural and compositional controls on electrocatalytic activity for iron
nickel sulfide, Fe4.5Ni4.5S8. Small variations in the surface Fe : Ni :
S ratio, achieved through varying synthesis conditions or material
“aging”, can lead to a tremendously altered catalytic HER activity.
In a more general sense, this study demonstrates how information
on surface structure and atomic composition within an investiga-
ted (nano)material can be directly correlated to spatially-resolved
electrochemical information, which is a crucial step in rational ca-
talyst design and synthesis. In this regard, SECCM could have an
important role in resolving structure-activity relationships in com-
plex electrocatalytically active materials and in heterogeneous
catalyst discovery.
[5]
[6]
X. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148–5180.
“ExxonMobil’s 2017 Outlook for Energy PDF reports,” can be found
outlook/download-the-report/download-the-outlook-for-energy-reports,
2017.
W. Sheng, Z. Zhuang, M. Gao, J. Zheng, J. G. Chen, Y. Yan, Nat.
Commun. 2015, 6, DOI 10.1038/ncomms6848.
C. L. Bentley, M. Kang, F. M. Maddar, F. Li, M. Walker, J. Zhang, P. R.
Unwin, Chem. Sci. 2017, 8, 6583–6593.
[7]
[8]
[9]
D. Merki, X. Hu, Energy Environ. Sci. 2011, 4, 3878–3888.
[10] J. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nat Mater 2012,
11, 963–969.
[11] B. Konkena, J. Masa, W. Xia, M. Muhler, W. Schuhmann, Nano Energy
2016, 29, 46–53.
[12] M. A. Lukowski, A. S. Daniel, F. Meng, A. Forticaux, L. Li, S. Jin, J. Am.
Chem. Soc. 2013, 135, 10274–10277.
[13] Z. Lei, S. Xu, P. Wu, Phys Chem Chem Phys 2016, 18, 70–74.
[14] J. D. Benck, T. R. Hellstern, J. Kibsgaard, P. Chakthranont, T. F.
Jaramillo, ACS Catal. 2014, 4, 3957–3971.
[15] B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen,
S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127,
5308–5309.
[16] B. Konkena, K. junge Puring, I. Sinev, S. Piontek, O. Khavryuchenko, J.
P. Dürholt, R. Schmid, H. Tüysüz, M. Muhler, W. Schuhmann, et al.,
Nat. Commun. 2016, 7, 12269–12277.
[17] K. junge Puring, S. Piontek, M. Smialkowski, J. Burfeind, S. Kaluza, C.
Doetsch, U.-P. Apfel, J. Vis. Exp. 2017, 124, DOI 10.3791/56087.
[18] I. Zegkinoglou, A. Zendegani, I. Sinev, S. Kunze, H. Mistry, H. S. Jeon,
J. Zhao, M. Y. Hu, E. E. Alp, S. Piontek, et al., J. Am. Chem. Soc. 2017,
14360–14363.
Acknowledgements
[19] G. Zhang, P. M. Kirkman, A. N. Patel, A. S. Cuharuc, K. McKelvey, P. R.
Unwin, J. Am. Chem. Soc. 2014, 136, 11444–11451.
[20] C.-H. Chen, K. E. Meadows, A. Cuharuc, S. C. S. Lai, P. R. Unwin,
Phys. Chem. Chem. Phys. 2014, 16, 18545–18552.
[21] P. R. Unwin, A. G. Güell, G. Zhang, Acc. Chem. Res. 2016, 49, 2041–
2048.
[22] N. Ebejer, A. G. Güell, S. C. S. Lai, K. McKelvey, M. E. Snowden, P. R.
Unwin, Annu. Rev. Anal. Chem. 2013, 6, 329–351.
[23] R. G. Mariano, K. McKelvey, H. S. White, M. W. Kanan, Science 2017,
358, 1187–1192.
[24] C. L. Bentley, M. Kang, P. R. Unwin, J. Am. Chem. Soc. 2017, 139,
16813–16821.
[25] T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I.
Chorkendorff, Science 2007, 317, 100–102.
[26] Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc.
2011, 133, 7296–7299.
C.L.B. acknowledges support from a Marie Curie Individual Fel-
lowship (702048 NEIL). P.R.U. thanks the Royal Society for a
Wolfson Research Merit Award. U.-P.A. is grateful for the financial
support by the Fonds of the Chemical Industry (Liebig grant) and
the Deutsche Forschungsgemeinschaft (Emmy Noether grant to
U.-P.A., AP242/2-1 and AP242/6-1). W.S. is grateful for financial
support from the Deutsche Forschungsgemeinschaft in the frame-
work of the cluster of excellence “RESOLV” (EXC1069). The
authors thank Mr. Lewis Yule and Dr. Geoff West for performing
EBSD.
[27] A. Pearson, M. Buerger, Am. Mineral. 1956, 41, 804–805.
[28] S. P. E, Y.-R. Kim, D. Perry, C. L. Bentley, P. R. Unwin, ACS Appl.
Mater. Interfaces 2016, 8, 30458–30466.
[29] C.-H. Chen, L. Jacobse, K. McKelvey, S. C. S. Lai, M. T. M. Koper, P. R.
Unwin, Anal. Chem. 2015, 87, 5782–5789.
Keywords: electrocatalysis; iron-nickel-sulfide; SECCM;
hydrogen evolution reaction; single-crystal surface
[30] A. G. Güell, A. S. Cuharuc, Y.-R. Kim, G. Zhang, S. Tan, N. Ebejer, P.
R. Unwin, ACS Nano 2015, 9, 3558–3571.
[31] S. Piontek, C. Andronescu, A. Zaichenko, B. Konkena, K. junge Puring,
B. Marler, H. Antoni, I. Sinev, M. Muhler, D. Mollenhauer, et al., ACS
Catal. 2018, 987–996.
[1]
Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov,
T. F. Jaramillo, Science 2017, 355, DOI 10.1126/science.aad4998.
W. Lubitz, W. Tumas, Chem. Rev. 2007, 107, 3900–3903.
J. M. Ogden, Phys. Today 2002, 55, 69.
[2]
[3]
This article is protected by copyright. All rights reserved.