Inorganic Chemistry
Article
frequency above 100,000 s−1 for H2 production. Science 2011, 333,
863−866.
(21) Bediako, D. K.; Solis, B. H.; Dogutan, D. K.; Roubelakis, M. M.;
Maher, A. G.; Lee, C. H.; Chambers, M. B.; Hammes-Schiffer, S.;
Nocera, D. G. Role of pendant proton relays and proton-coupled
electron transfer on the hydrogen evolution reaction by nickel
hangman porphyrins. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 15001−
15006.
(22) Brazzolotto, D.; Gennari, M.; Queyriaux, N.; Simmons, T. R.;
Pecaut, J.; Demeshko, S.; Meyer, F.; Orio, M.; Artero, V.; Duboc, C.
Nickel-centred proton reduction catalysis in a model of NiFe
hydrogenase. Nat. Chem. 2016, 8, 1054−1060.
(23) McCrory, C. C. L.; Uyeda, C.; Peters, J. C. Electrocatalytic
hydrogen evolution in acidic water with molecular cobalt tetraazama-
crocycles. J. Am. Chem. Soc. 2012, 134, 3164−3170.
(24) Dempsey, J. L.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B.
Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 2009,
42, 1995−2004.
(38) Jablonskyte, A.; Wright, J. A.; Fairhurst, S. A.; Peck, J. N. T.;
̇
Ibrahim, S. K.; Oganesyan, V. S.; Pickett, C. J. Paramagnetic Bridging
Hydrides of Relevance to Catalytic Hydrogen Evolution at Metal-
losulfur Centers. J. Am. Chem. Soc. 2011, 133, 18606−18609.
(39) Zheng, D. H.; Wang, N.; Wang, M.; Ding, S. D.; Ma, C. B.;
Darensbourg, M. Y.; Hall, M. B.; Sun, L. C. Intramolecular Iron-
Mediated C-H Bond Heterolysis with an Assist of Pendant Base in a
[FeFe]-Hydrogenase Model. J. Am. Chem. Soc. 2014, 136, 16817−
16823.
(40) Wright, R. J.; Zhang, W.; Yang, X. Z.; Fasulo, M.; Tilley, T. D.
Isolation, observation, and computational modeling of proposed
intermediates in catalytic proton reductions with the hydrogenase
mimic Fe2(CO)6S2C6H4. Dalton Trans. 2012, 41, 73−82.
(41) Cheah, M. H.; Tard, C.; Borg, S. J.; Liu, X. M.; Ibrahim, S. K.;
Pickett, C. J.; Best, S. P. Modeling Fe-Fe hydrogenase: evidence for
bridging carbonyl and distal iron coordination vacancy in an
electrocatalytically competent proton reduction by an iron thiolate
assembly that operates through Fe(0)-Fe(II) levels. J. Am. Chem. Soc.
2007, 129, 11085−11092.
(42) Carroll, M. E.; Barton, B. E.; Gray, D. L.; Mack, A. E.;
Rauchfuss, T. B. Active-Site Models for the Nickel-Iron Hydrogenases:
Effects of Ligands on Reactivity and Catalytic Properties. Inorg. Chem.
2011, 50, 9554−9563.
(43) Singleton, M. L.; Crouthers, D. J.; Duttweiler, R. P.;
Reibenspies, J. H.; Darensbourg, M. Y. Sulfonated Diiron Complexes
as Water-Soluble Models of the [FeFe]-Hydrogenase Enzyme Active
Site. Inorg. Chem. 2011, 50, 5015−5026.
(44) Ryde, U.; Greco, C.; De Gioia, L. Quantum Refinement of
[FeFe] Hydrogenase Indicates a Dithiomethylamine Ligand. J. Am.
Chem. Soc. 2010, 132, 4512−4513.
(45) Greco, C.; Bruschi, M.; Fantucci, P.; Ryde, U.; De Gioia, L.
Mechanistic and Physiological Implications of the Interplay among
Iron-Sulfur Clusters in [FeFe]-Hydrogenases. A QM/MM Perspective.
J. Am. Chem. Soc. 2011, 133, 18742−18749.
(46) Siegbahn, P. E. M.; Tye, J. W.; Hall, M. B. Computational
studies of [NiFe] and [FeFe] hydrogenases. Chem. Rev. 2007, 107,
4414−4435.
(47) Hammes-Schiffer, S. Theory of Proton-Coupled Electron
Transfer in Energy Conversion Processes. Acc. Chem. Res. 2009, 42,
1881−1889.
(25) Chen, L.; Wang, M.; Han, K.; Zhang, P.; Gloaguen, F.; Sun, L. A
super-efficient cobalt catalyst for electrochemical hydrogen production
from neutral water with 80 mV overpotential. Energy Environ. Sci.
2014, 7, 329−334.
(26) Singh, W. M.; Mirmohades, M.; Jane, R. T.; White, T. A.;
Hammarstrom, L.; Thapper, A.; Lomoth, R.; Ott, S. Voltammetric and
̈
spectroscopic characterization of early intermediates in the Co(II)-
polypyridyl-catalyzed reduction of water. Chem. Commun. 2013, 49,
8638−8640.
(27) Letko, C. S.; Panetier, J. A.; Head-Gordon, M.; Tilley, T. D.
Mechanism of the Electrocatalytic Reduction of Protons with
Diaryldithiolene Cobalt Complexes. J. Am. Chem. Soc. 2014, 136,
9364−9376.
(28) Lee, C. H.; Dogutan, D. K.; Nocera, D. G. Hydrogen
Generation by Hangman Metalloporphyrins. J. Am. Chem. Soc. 2011,
133, 8775−8777.
(29) van der Meer, M.; Glais, E.; Siewert, I.; Sarkar, B.
Electrocatalytic Dihydrogen Production with a Robust Mesoionic
Pyridylcarbene Cobalt Catalyst. Angew. Chem., Int. Ed. 2015, 54,
13792−13795.
(30) Karunadasa, H. I.; Chang, C. J.; Long, J. R. A molecular
molybdenum-oxo catalyst for generating hydrogen from water. Nature
2010, 464, 1329−1333.
(31) Appel, A. M.; DuBois, D. L.; DuBois, M. R. Molybdenum-sulfur
dimers as electrocatalysts for the production of hydrogen at low
overpotentials. J. Am. Chem. Soc. 2005, 127, 12717−12726.
(32) Camara, J. M.; Rauchfuss, T. B. Combining acid-base, redox and
substrate binding functionalities to give a complete model for the
[FeFe]-hydrogenase. Nat. Chem. 2012, 4, 26−30.
(48) Reece, S. Y.; Nocera, D. G. Proton-Coupled Electron Transfer
in Biology: Results from Synergistic Studies in Natural and Model
Systems. Annu. Rev. Biochem. 2009, 78, 673−699.
(49) Warren, J. J.; Tronic, T. A.; Mayer, J. M. Thermochemistry of
proton-coupled electron transfer reagents and its implications. Chem.
Rev. 2010, 110, 6961−7001.
(50) Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.;
Kent, C. A.; Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D. G.;
Meyer, T. J. Proton-coupled electron transfer. Chem. Rev. 2012, 112,
4016−4093.
(33) Felton, G. A. N.; Vannucci, A. K.; Chen, J. Z.; Lockett, L. T.;
Okumura, N.; Petro, B. J.; Zakai, U. I.; Evans, D. H.; Glass, R. S.;
Lichtenberger, D. L. Hydrogen generation from weak acids:
Electrochemical and computational studies of a diiron hydrogenase
mimic. J. Am. Chem. Soc. 2007, 129, 12521−12530.
(51) Migliore, A.; Polizzi, N. F.; Therien, M. J.; Beratan, D. N.
Biochemistry and Theory of Proton-Coupled Electron Transfer. Chem.
Rev. 2014, 114, 3381−3465.
(34) Chouffai, D.; Capon, J.-F.; De Gioia, L.; Pet
́
illon, F. Y.;
Schollhammer, P.; Talarmin, J.; Zampella, G. A Diferrous Dithiolate as
inact
a Model of the Elusive Hox
State of the [FeFe] Hydrogenases: An
(52) Cattaneo, M.; Ryken, S. A.; Mayer, J. M. Outer-Sphere 2 e−/2
H+ Transfer Reactions of Ruthenium(II)-Amine and Ruthenium(IV)-
Amido Complexes. Angew. Chem., Int. Ed. 2017, 56, 3675−3678.
(53) Bergner, M.; Dechert, S.; Demeshko, S.; Kupper, C.; Mayer, J.
M.; Meyer, F. Model of the MitoNEET [2Fe-2S] Cluster Shows
Proton Coupled Electron Transfer. J. Am. Chem. Soc. 2017, 139, 701−
707.
Electrochemical and Theoretical Dissection of Its Redox Chemistry.
Inorg. Chem. 2015, 54, 299−311.
(35) Gloaguen, F. Electrochemistry of Simple Organometallic
Models of Iron-Iron Hydrogenases in Organic Solvent and Water.
Inorg. Chem. 2016, 55, 390−398.
(36) Gilbert-Wilson, R.; Siebel, J. F.; Adamska-Venkatesh, A.; Pham,
C. C.; Reijerse, E.; Wang, H. X.; Cramer, S. P.; Lubitz, W.; Rauchfuss,
T. B. Spectroscopic Investigations of [FeFe] Hydrogenase Maturated
with [57Fe2(adt)(CN)2(CO)4]2‑. J. Am. Chem. Soc. 2015, 137, 8998−
9005.
(54) Saouma, C. T.; Morris, W. D.; Darcy, J. W.; Mayer, J. M.
Protonation and Proton-Coupled Electron Transfer at S-Ligated [4Fe-
4S] Clusters. Chem. - Eur. J. 2015, 21, 9256−9260.
(55) Song, N.; Gagliardi, C. J.; Binstead, R. A.; Zhang, M. T.; Thorp,
H.; Meyer, T. J. Role of Proton-Coupled Electron Transfer in the
Redox Interconversion between Benzoquinone and Hydroquinone. J.
Am. Chem. Soc. 2012, 134, 18538−18541.
(37) Crouthers, D. J.; Denny, J. A.; Bethel, R. D.; Munoz, D. G.;
Darensbourg, M. Y. Conformational Mobility and Pendent Base
Effects on Electrochemistry of Synthetic Analogues of the FeFe
-Hydrogenase Active Site. Organometallics 2014, 33, 4747−4755.
I
Inorg. Chem. XXXX, XXX, XXX−XXX