Journal of the American Chemical Society
Page 4 of 5
*wenbinlin@uchicago.edu
Notes
This work was partially supported by National Science Foun‐
dation (DMR‐1308229).
1
The authors declare no competing financial interests.
2
3
4
ACKNOWLEDGMENT
5
6
7
8
(15) Horiuchi, Y.; Toyao, T.; Saito, M.; Mochizuki, K.; Iwata,
M.; Higashimura, H.; Anpo, M.; Matsuoka, M., Visible‐Light‐
Promoted Photocatalytic Hydrogen Production by Using an
Amino‐Functionalized Ti(IV) Metal‐Organic Framework. J.
Phys. Chem. C 2012, 116 (39), 20848‐20853.
(16) Fateeva, A.; Chater, P. A.; Ireland, C. P.; Tahir, A. A.;
Khimyak, Y. Z.; Wiper, P. V.; Darwent, J. R.; Rosseinsky, M. J.,
A Water‐Stable Porphyrin‐Based Metal‐Organic Framework
Active for Visible‐Light Photocatalysis. Angew. Chem., Int.
Ed. 2012, 51 (30), 7440‐7444, S7440/1‐S7440/17.
(17) Wu, P.; Jiang, M.; Li, Y.; Liu, Y.; Wang, J., Highly
efficient photocatalytic hydrogen production from pure
water via a photoactive metal‐organic framework and its
PDMS@MOF. J. Mater. Chem. A 2017, 5 (17), 7833‐7838.
(18) Lan, G.; Zhu, Y.‐Y.; Veroneau, S. S.; Xu, Z.; Micheroni,
D.; Lin, W., Electron Injection from Photoexcited Metal‐
Organic Framework Ligands to Ru2 Secondary Building
Units for Visible‐Light‐Driven Hydrogen Evolution. J. Am.
Chem. Soc. 2018, 140 (16), 5326‐5329.
(19) deKrafft, K. E.; Wang, C.; Lin, W., Metal‐Organic
Framework Templated Synthesis of Fe2O3/TiO2
Nanocomposite for Hydrogen Production. Adv. Mater.
(Weinheim, Ger.) 2012, 24 (15), 2014‐2018.
(20) Zhang, J.; An, B.; Hong, Y.; Meng, Y.; Hu, X.; Wang, C.;
Lin, J.; Lin, W.; Wang, Y., Pyrolysis of metal‐organic
frameworks to hierarchical porous Cu/Zn‐
nanoparticle@carbon materials for efficient CO2
hydrogenation. Mater. Chem. Front. 2017, 1 (11), 2405‐2409.
(21) Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang,
X., A metal‐organic framework‐derived bifunctional oxygen
electrocatalyst. Nat. Energy 2016, 1 (1), 15006.
(22) Kornienko, N.; Zhao, Y.; Kley, C. S.; Zhu, C.; Kim, D.;
Lin, S.; Chang, C. J.; Yaghi, O. M.; Yang, P., Metal‐Organic
Frameworks for Electrocatalytic Reduction of Carbon
Dioxide. J. Am. Chem. Soc. 2015, 137 (44), 14129‐14135.
(23) Lu, X.‐F.; Liao, P.‐Q.; Wang, J.‐W.; Wu, J.‐X.; Chen, X.‐
W.; He, C.‐T.; Zhang, J.‐P.; Li, G.‐R.; Chen, X.‐M., An
Alkaline‐Stable, Metal Hydroxide Mimicking Metal‐Organic
Framework for Efficient Electrocatalytic Oxygen Evolution. J.
Am. Chem. Soc. 2016, 138 (27), 8336‐8339.
(24) Wurster, B.; Grumelli, D.; Hoetger, D.; Gutzler, R.;
Kern, K., Driving the Oxygen Evolution Reaction by
Nonlinear Cooperativity in Bimetallic Coordination
Catalysts. J. Am. Chem. Soc. 2016, 138 (11), 3623‐3626.
(25) Miner, E. M.; Gul, S.; Ricke, N. D.; Pastor, E.; Yano, J.;
Yachandra, V. K.; Van Voorhis, T.; Dinca, M., Mechanistic
Evidence for Ligand‐Centered Electrocatalytic Oxygen
Reduction with the Conductive MOF
REFERENCES
(1) Trasatti, S., Work function, electronegativity, and
electrochemical behavior of metals. III. Electrolytic hydrogen
evolution in acid solutions. J. Electroanal. Chem. Interfacial
Electrochem. 1972, 39 (1), 163‐84.
(2) Norskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.;
Chen, J. G.; Pandelov, S.; Stimming, U., Trends in the
exchange current for hydrogen evolution. J. Electrochem. Soc.
2005, 152 (3), J23‐J26.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3) Hu, X. L.; Brunschwig, B. S.; Peters, J. C.,
Electrocatalytic Hydrogen Evolution at Low Overpotentials
by Cobalt Macrocyclic Glyoxime and Tetraimine Complexes.
J. Am. Chem. Soc. 2007, 129 (29), 8988‐8998.
(4) Sun, Y.; Bigi, J. P.; Piro, N. A.; Tang, M. L.; Long, J. R.;
Chang, C. J., Molecular Cobalt Pentapyridine Catalysts for
Generating Hydrogen from Water. J. Am. Chem. Soc. 2011, 133
(24), 9212‐9215.
(5) Dempsey, J. L.; Brunschwig, B. S.; Winkler, J. R.; Gray,
H. B., Hydrogen Evolution Catalyzed by Cobaloximes. Acc.
Chem. Res. 2009, 42 (12), 1995‐2004.
(6) Tsay, C.; Yang Jenny, Y., Electrocatalytic Hydrogen
Evolution under Acidic Aqueous Conditions and Mechanistic
Studies of a Highly Stable Molecular Catalyst. J Am Chem Soc
2016, 138 (43), 14174‐14177.
(7) Bianchini, C.; Fornasiero, P., A Synthetic Nickel
Electrocatalyst with a Turnover Frequency above 100 000 s‐1
for H2 Production. ChemCatChem 2012, 4 (1), 45‐46.
(8) Wilson Aaron, D.; Shoemaker, R. K.; Miedaner, A.;
Muckerman, J. T.; DuBois Daniel, L.; DuBois, M. R., Nature of
hydrogen interactions with Ni(II) complexes containing
cyclic phosphine ligands with pendant nitrogen bases. Proc
Natl Acad Sci U S A 2007, 104 (17), 6951‐6.
(9) Kaur‐Ghumaan, S.; Schwartz, L.; Lomoth, R.; Stein, M.;
Ott, S., Catalytic Hydrogen Evolution from Mononuclear
Iron(II) Carbonyl Complexes as Minimal Functional Models
of the [FeFe] Hydrogenase Active Site. Angew. Chem., Int. Ed.
2010, 49 (43), 8033‐8036, S8033/1‐S8033/12.
(10) Gloaguen, F.; Rauchfuss, T. B., Small molecule mimics
of hydrogenases: hydrides and redox. Chem. Soc. Rev. 2009,
38 (1), 100‐108.
(11) Benck, J. D.; Hellstern, T. R.; Kibsgaard, J.;
Chakthranont, P.; Jaramillo, T. F., Catalyzing the Hydrogen
Evolution Reaction (HER) with Molybdenum Sulfide
Nanomaterials. ACS Catal. 2014, 4 (11), 3957‐3971.
(12) Vrubel, H.; Hu, X., Molybdenum Boride and Carbide
Catalyze Hydrogen Evolution in both Acidic and Basic
Solutions. Angew. Chem., Int. Ed. 2012, 51 (51), 12703‐12706.
(13) Xing, Z.; Liu, Q.; Asiri, A. M.; Sun, X., Closely
interconnected network of molybdenum phosphide
nanoparticles: a highly efficient electrocatalyst for generating
hydrogen from water. Adv. Mater. (Weinheim, Ger.) 2014, 26
(32), 5702‐5707.
Ni3(hexaiminotriphenylene)2. ACS Catal. 2017, 7 (11), 7726‐
7731.
(26) Hod, I.; Deria, P.; Bury, W.; Mondloch, J. E.; Kung, C.‐
W.; So, M.; Sampson, M. D.; Peters, A. W.; Kubiak, C. P.;
Farha, O. K.; Hupp, J. T., A porous proton‐relaying metal‐
organic framework material that accelerates electrochemical
hydrogen evolution. Nat. Commun. 2015, 6, 8304.
(27) Hod, I.; Sampson, M. D.; Deria, P.; Kubiak, C. P.;
Farha, O. K.; Hupp, J. T., Fe‐Porphyrin‐Based Metal–Organic
(14) Drake, T.; Ji, P.; Lin, W., Site Isolation in Metal‐
Organic Frameworks Enables Novel Transition Metal
Catalysis. Acc. Chem. Res. 2018, Ahead of Print.
ACS Paragon Plus Environment