Please do not adjust margins
Dalton Transactions
Page 6 of 8
ARTICLE
Journal Name
100
1
2
3
4
5
6
P. Chen, Z. Xiong, J. Luo, J. Lin and K.L. Tan, Nature, 2002,
a
b
420, 302-304.
M. E. Bluhm, M. G. Bradley, R. ButterDicOkI,: U10..1K0u3s9a/Dri0aDnTd01L5.58GJ.
Sneddon, J. Am. Chem. Soc., 2006, 128, 7748-7749.
U. B. Demirci and P. Miele, Energy Environ. Sci., 2009, 2,
627-637.
Q.-L. Zhu, J. Li and Q. Xu, J. Am. Chem. Soc., 2013, 135,
10210-10213.
Q. Yao, Z.-H. Lu, W. Huang, X. Chen and J. Zhu, J. Mater.
Chem., 2016, 4, 8579-8583.
C.-Y. Cao, C.-Q. Chen, W. Li, W.-G. Song and W. Cai,
ChemSusChem, 2010, 3, 1241-1244.
Q. Metin and S. Ozkar, Energy Fuels., 2009, 23, 3517−3525.
J.-L. Sun, Y.-Z. Chen, B.-D. Ge, J.-H. Li and G.-M. Wang, ACS
Appl. Mater. Inter., 2019, 11, 940-947.
B. Coq, A. Tijani and F. Figuéras, J. Mol. Catal., 1991, 68,
331-345.
80
60
40
20
0
100 nm
6
8
10 12 14
Diameter (nm)
5
10
15
Cycles
20
25
30
Fig. 6 Recyclability test for the hydrogenation of nitrobenzene through thirty
consecutive runs over CoNi@C, inset: (a) the photographs showing the simple
removability of catalyst from solution via an external magnet. (b) TEM image of
CoNi@C after 30 cycles (inset: size distribution).
7
8
Furthermore, the recyclability and stability of CoNi@C for
the reduction of nitrobenzene with NH3BH3 has been
investigated by simple magnetic recycling. As illustrated in Fig.
6a, the catalytic activity of CoNi@C is well preserved and the
sizes of CoNi NPs are almost maintained by TEM observation
even after 30 runs (Fig. 6b, Fig. S6†). The excellent catalytic
activity and extraordinary recyclability of CoNi@C is mainly
ascribed to the porous carbon framework, small size of the
CoNi NPs, the synergistic interaction between Co and Ni
species and the good confinement effect of graphitized
carbon around CoNi NPs. These reaction results reflect the
generality and practicability of CoNi@C catalyst toward
chemical hydrogen storage and hydrogenation reactions,
demonstrating the advantages of QDUC-2 crystal.
9
10 A. Grirrane, A. Corma and H. Garcia, Science, 2008, 322,
1661-1664.
12 M. A. Mahmoud and M. A. El-Sayed, Nano Lett., 2011, 11,
946-953.
13 F. A. Westerhaus, R. V. Jagadeesh, G. Wienhöfer, M.-M.
Pohl, J. Radnik, A.-E. Surkus, J. Rabeah, K. Junge, H. Junge,
M. Nielsen, A. Brückner and M. Beller, Nat. Chem., 2013, 5,
537-543.
14 S. Gladiali and E. Alberico, Chem. Soc. Rev., 2006, 35, 226-
236.
15 H.-L. Jiang, T. Akita, T. Ishida, M. Haruta and Q. Xu, J. Am.
Chem. Soc., 2011, 133, 1304-1306.
16 A. Liu, C. H. H. Traulsen and J. J. L. M. Cornelissen, ACS
Catal., 2016, 6, 3084-3091.
17 H. Göksu, S. F. Ho, O. Metin, K. Korkmaz, A. M. Garcia, M. S.
Gültekin and S. Sun, ACS Catal., 2014, 4, 1777-1782.
18 N. L. Rosi and C. A. Mirkin, Chem. Rev., 2005, 25, 1547-
1562.
19 P. K. Jain, X. Huang, I. H. El-Sayed and M.A. El-Sayed, Acc.
Chem. Res., 2008, 41, 1578-1586.
Conclusions
In summary, we have designedly synthesized an effective,
inexpensive, and magnetically recoverable multifunctional
nanocatalysts via one-step pyrolysis of a novel bimetallic MOF
crystal. This synthesis approach effectively avoids the aggregation
of incorporated active NPs and inherits the porosity and lamellar
shape of the MOF template, thus greatly improving their contact
with the active sites and facilitating the transportation of
substrates. The main catalyst, CoNi@C, is highly active and chemo-
selective toward the tandem reaction, and exhibits satisfactory
longevity and durability during the multiple cycle tests, which is
urgently required in industrial synthesis. Although exploration of
more stable MOF crystals with multiple metal sites remains to be a
great challenge, we believe that multifunctional metal-based
catalysts would be explored for industrial application via this
design idea.
20 D. Astruc, Vol. 2, WILEY-VCH, Weinheim, (2008), pp. 1-640.
21 H. Zhang, M. Jin and Y. Xia, Chem. Soc. Rev., 2012, 41, 8035-
8049.
22 Y. Zhai, Z. Zhu, C. Zhu, K. Chen, X. Zhang, J. Tang and J.
Chen,
Mater.
Today,
2020,
DOI:
10.1016/j.mattod.2020.03.022.
23 H. J. Cho, D. Kim, J. Li, D. Su and B. Xu, J. Am. Chem. Soc.,
2018, 140, 13514-13520.
24 D. Wang and D. Astruc, Chem. Soc. Rev., 2017, 46, 816-854.
25 R. M. Bullock, Science, 2013, 342, 1054-1055.
26 C. Li, C. Chen, Y. Zhang, S. Xu, S. Zhou, J. Wang, F. Wei, M.
Evans and D.-G. Duan, Chem. Mater., 2013, 25, 3888-3896.
27 H.-C. Zhou, J. R. Long and O. M. Yaghi, Chem. Rev., 2012,
112, 673-674.
28 H.-C. Zhou and S. Kitagawa, Chem. Soc. Rev., 2014, 43,
5415-5418.
29 T. Islamoglu, S. Goswami, Z. Li, A. J. Howarth, O. K. Farha
and J. T. Hupp, Acc. Chem. Res., 2017, 50, 805-813.
30 P.-Q. Liao, N.-Y. Huang, W.-X. Zhang, J.-P. Zhang and X.-M.
Chen, Science, 2017, 356, 1193-1196.
31 L. Li, R.-B. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W.
Zhou and B. Chen, Science, 2018, 362, 443-446.
32 K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D.
Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, Chem. Rev., 2012,
112, 724-781.
Acknowledgement
This work is supported by the NSFC (21701093), Key Research and
Development Program of Shandong Province (2019GGX103043),
the NSF of Shandong Province (ZR201702200574) and China
Postdoctoral
Science
Foundation
(2018T110664
and
2017M622127).
33 T. Zhang and W. Lin, Chem. Soc. Rev., 2014, 43, 5982-5993.
34 C. N. Neumann, S. J. Rozeveld, M. Yu, A. J. Rieth and M.
Dincă, J. Am. Chem. Soc., 2019, 141, 17477-17481.
Notes and references
The authors declare no competing financial interest.
6 | J. Name., 2016, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins